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Abstract. Consider a network of unreliable links, modelling for example a communication network. Es-
timating the reliability of the network – expressed as the probability that certain nodes in the network are
connected – is a computationally difficult task. In this paper we study how the Cross-Entropy method can be
used to obtain more efficient network reliability estimation procedures. Three techniques of estimation are
considered: Crude Monte Carlo and the more sophisticated Permutation Monte Carlo and Merge Process.
We show that the Cross-Entropy method yields a speed-up over all three techniques.
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It is well known that for large networks the exact calculation of network reliability is
difficult. Indeed, computing the probability that a graph is connected is a #P-complete
problem (Colbourn, 1987; Provan and Ball, 1982). Although approximation (Burtin and
Pittel, 1972) and bounding (Barlow and Proschan, 1975; Barlow and Marshall, 1964;
Esary, Proschan, and Walkup, 1967) methods are available, their accuracy and scope are
very much dependent on the properties (such as size and topology) of the network. For
large networks estimating the reliability using simulation techniques becomes desirable.
In highly reliable networks such as modern communication networks, the probability of
network failure is very small. Direct simulation of such rare events is slow and hence
very expensive. Various techniques have been developed to produce better estimates.
For example, Kumamoto proposed a very simple technique called Dagger Sampling to
improve the Crude Monte Carlo simulation (Kumamoto et al., 1980). Fishman proposed
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Procedure Q which can provide reliability estimates as well as bounds (Fishman, 1986).
Colbourn and Harms proposed a technique that provides progressive bounds that eventu-
ally converge to an exact reliability value (Colbourn and Harms, 1994). Easton and Wong
proposed a sequential construction method (Easton and Wong, 1980). Elperin, Gertsbakh,
and Lomonosov proposed Evolution Models for estimating reliability of highly reliable
networks (Elperin, Gertsbakh, and Lomonosov, 1991, 1992). Hui et al. proposed a hybrid
scheme that provides bounds and can provide speed-up by several orders of magnitude
in a certain class of networks (Hui et al., 2003).

The Cross-Entropy (CE) method originated from Rubinstein (1997) as an adaptive
algorithm for estimating probabilities of rare events in complex stochastic networks. The
method can also be used for solving optimisation problems (Rubinstein, 1999, 2001).
The Cross-Entropy method has been successfully applied to a wide range of combi-
natorial and continuous optimisation problems (Dubin, 2002; Lieber, 1998; Margolin,
2002; Rubinstein, 1999), including problems in reliability theory (Lieber, Rubinstein,
and Elmakis, 1997), buffer allocation (Alon et al., 2005), telecommunication systems
(de Boer, 2000; de Boer, Kroese, and Rubinstein, 2004; de Boer and Nicola, 2002; de Boer,
Nicola, and Rubinstein, 2000), neural computation (Dubin, 2002), control and navigation
(Helvik and Wittner, 2001; Wittner and Helvik, 2002), DNA sequence alignment (Keith
and Kroese, 2002), scheduling (de Mello and Rubinstein, 2002; Margolin, 2002) and
Max-Cut and bipartition problems (Rubinstein, 2002). A short review of the basic ideas
behind the Cross-Entropy method is given at the end of this section, but for details we
refer to the book on Cross-Entropy (Rubinstein and Kroese, 2004), and the tutorial in
de Boer et al. (2005).

In this paper we investigate the benefits of the Cross-Entropy method to the estima-
tion of network reliability or, equivalently, network unreliability. Basically, the Cross-
Entropy method provides an iterative procedure to adaptively estimate the optimal Im-
portance Sampling parameters for the quantity of interest, in our case the unreliability.
We show that the Cross-Entropy technique indeed can lead to a significant speed-up.

The rest of the paper is organised as follows. At the end of this introduction we give a
brief review of the most important aspects of the Cross-Entropy method for Monte Carlo
simulation. In Section 2 we discuss unreliable networks and give three methods, Crude
Monte Carlo (CMC), Permutation Monte Carlo (PMC) and the Merge Process (MP)
to estimate network unreliability. Section 3 deals with the Cross-Entropy modification
of the three methods. In this section we use a simple bridge system as an example. In
Section 4 we give numerical results for larger examples, exemplifying what we found in
Section 3 for the simple bridge system.

1. A very short introduction to CE

It is not our intention to give a detailed account of the Cross-Entropy method – for this we
refer to de Boer et al. (2005) – but in order to keep this paper self-contained, we mention
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the main points. Consider the problem of estimating

� = Eu[H (Y)] =
∫

H (y) f (y; u) d y, (1)

where H (y) is some positive function and Y = (Y1, . . . , Yn) is a random vector with
(joint) probability density function (pdf) f (·; u) which depends on a reference parameter
u. We can estimate � using Importance Sampling (IS) as

�̂ = 1

N1

N1∑
i=1

H
(
Y (i)

)
W

(
Y (i); u, v

)
, (2)

where Y (1), . . . , Y (N1) is a random sample from f (·; v) – using a different reference pa-
rameter v – and

W (Y ; u, v) = f (Y ; u)

f (Y ; v)
, (3)

is the likelihood ratio. We can choose any reference vector v in (2), but the one that is
optimal in the Cross-Entropy sense given u and w is

v∗ = argmax
v

Ew [H (Y)] W (Y ; u, w) log f (Y ; v). (4)

The corresponding pdf f (·; v∗) has the smallest Cross-Entropy distance to the ideal (zero
variance) Importance Sampling pdf (see for example Rubinstein and Melamed (1998))

g∗(y) = H (y) f (y; u)

�
. (5)

We can estimate the optimal Cross-Entropy reference vector, as the solution of the iter-
ative procedure

vt = argmax
v

1

N

N∑
i=1

H
(
Y (i)

)
W

(
Y (i); u, vt−1

)
log f (Y (i); v), (6)

where at each iteration t a random sample from f (·; vt−1) is taken. The solution of (6)
can often be determined analytically.

In the rare-event setting H (Y) is of the form H (Y) = I {S(Y) ≥ γ } where I is the
indicator function and γ is a constant, then

� = P[S(Y) ≥ γ ] (7)

is a small probability. The function S is called the performance function. For rare-event
estimation problems, (6) is difficult to carry out because of the rareness of the event
and most of the indicators H (Y (i)) will be zero. For such problems a two-phase Cross-
Entropy procedure is employed, in which apart from v the level parameter γ is also
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updated, creating a sequence of pairs {(vt , γt )} with the goal of estimating the optimal
Cross-Entropy reference parameter v∗. Starting with v0 = u (the original or nominal
parameter), the updating formulas are as follows:

Given a random sample Y (1), . . . , Y (N ) from f (·; vt−1), we concentrate on the
best performing ρ-portion of the samples. Let γt be the sample (1 − ρ)-quantile of
the performances S(Y (i)), i = 1, . . . , N , provided the sample quantile is less than γ ;
otherwise we set γt to γ . In other words, let

γt = min
{
γ, S(�(1−ρ)N�)

}
, (8)

where S( j) is the j-th order-statistic of the performances. Using the same sample, we let

vt = argmax
v

1

N

N∑
i=1

I
{

S
(
Y (i)

) ≥ γt
}
W

(
Y (i); u, vt−1

)
log f

(
Y (i); v

)
. (9)

Again, it is important to understand that in many cases an explicit formula for vt

can be given, that is, we do not need to “solve” the optimisation problem (9). Provided ρ

is small and N is large enough, vt in (9) converges to the optimal v∗ in (4) (see Rubinstein
and Kroese (2004)).

2. Estimation of network reliability

2.1. Network reliability

Consider an undirected graph (or network) G(V, E, K ), where V is the set of n vertices
(or nodes), E is the set of m edges, and K ⊆ V is a set of terminal nodes, with |K | ≥ 2.
Associated with each edge e ∈ E is a binary random variable Xe, denoting the failure
state of the edge. In particular, {Xe = 1} is the event that the edge e is operational, and
{Xe = 0} is the event that it has failed. We label the edges from 1 to m, and call the
vector X = (X1, . . . , Xm) the state of the network. Let S be the set of all 2m possible
states of E .

Next, we assume that the random variables {Xe, e ∈ E} are mutually independent.
Let pe and qe denote the reliability and unreliability of e ∈ E respectively. That is

pe = P[Xe = 1],

qe = P[Xe = 0] = 1 − pe.

The reliability r of the network is defined as the probability of K being connected by
operational edges. Thus,

r = E[ϕ(X)] =
∑
x∈S

ϕ(x) P[X = x], (10)
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where

ϕ(x) =
{

1 if K is connected,

0 otherwise.

This is the standard formulation of the reliability of unreliable systems, see for example
(Barlow and Proschan, 1975). The function ϕ is called the structure function of the
unreliable system. Note that the reliability of the network is completely determined by
the individual edge reliabilities since we do not consider node failures.

For highly reliable networks it is sometimes more useful to analyse or estimate the
system unreliability

r = 1 − r.

Let Q be an unbiased estimate of r obtained through Monte Carlo simulations, an im-
portant measure of the “efficiency” of the simulation is its relative error

re(Q) =
√

Var(Q)

(E[Q])2
.

Example 1 (Bridge Network). Consider the simple network in figure 1, called a bridge
network. The bridge network will serve as a convenient reference example to which we
will return throughout the paper. Here we have five unreliable edges, labelled 1, . . . , 5.
The network is operating if the two terminal nodes A and B are connected by operational
edges.

It is not difficult to see that the structure function ϕ is given by

ϕ(x) = 1 − (1 − x1x3x5)(1 − x2x3x4)(1 − x1x4)(1 − x2x5).

Figure 1. Two-terminal bridge network.
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Applying the inclusion-exclusion principle to the mincuts, the system unreliability is
equal to

r = q1q2 + q2q3q4 − q1q2q3q4 + q1q3q5 − q1q2q3q5

+ q4q5 − q1q2q4q5 − q1q3q4q5 − q2q3q4q5 + 2q1q2q3q4q5. (11)

2.2. Crude Monte Carlo simulation

Let us assume the typical situation where the edges are highly reliable, that is, the qe are
close to 0. In that case, the appropriate quantity to estimate is the system unreliability r
which will be close to 0, rather than r which will be close to 1. The simplest way to estimate
r is to use Crude Monte Carlo (CMC) simulation. Let X(1), . . . , X(N ) be independent
identically-distributed random vectors with the same distribution as X. Then

Q = 1

N

N∑
i=1

(
1 − ϕ

(
X(i)

))
(12)

is an unbiased estimator for r and its relative error is

re(Q) =
√

Var(Q)

(E[Q])2
=

√
r (1 − r )/N

r2 =
√

1 − r

N r
.

This shows that for small r , a large sample size is needed to estimate r accurately, since
the event that the terminal nodes are not connected is a rare event.

2.3. Permutation Monte Carlo simulation

A more efficient way of estimating the network unreliability is Permutation Monte Carlo
(Elperin, Gertsbakh, and Lomonosov, 1991). The idea is as follows. Consider the net-
work G(V, E) in which each edge e has an exponential repair time with repair rate
λ(e) = − log(qe). At time t = 0 all edges are failed and assume that all repair times are
independent of each other. The state of e at time t is denoted by Xe(t) and the state of
the edge set E at time t is given by the vector X(t), defined in a similar way as before.
Thus (X(t)) is a Markov process with state space {0, 1}m . This process is called the
Construction Process (CP) of the network.

Let � denote the order in which the edges are constructed (become operational), and
let A0, A0 + A1, . . . , A0 +· · ·+ Am−1 be the times at which those edges are constructed.
Hence the Ai are sojourn times of (X(t)). � is a random variable which takes values in
the space of permutations of E .
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For any permutation π = (e1, e2, . . . , em) define

E0 = E,

Ei = Ei−1\{ei }, 1 ≤ i ≤ m − 1,

λ(Ei ) =
∑
e∈Ei

λ(e),

and let

b(π ) = min
i

{ϕ(Ei ) = 1}

be the so-called critical number of π . From the general theory of Markov processes it is
not difficult to see that

P[� = π ] =
m∏

j=1

λ(e j )

λ(E j−1)
. (13)

Moreover, conditional on {� = π}, the sojourn times A0, . . . , Am−1 are independent
and each Ai is exponentially distributed with parameter λ(Ei ), i = 0, . . . , m − 1.

Note that the probability of each edge e being operational at time t = 1 is pe.
It follows that the network reliability at time t = 1 is the same as in (10). Hence, by
conditioning on � we have

r = E[ϕ(X(1))] =
∑
π

P[� = π ] P[ϕ(X(1)) = 1 | � = π ], (14)

and

r = 1 − r =
∑
π

P[� = π ] P[ϕ(X(1)) = 0 | � = π ]. (15)

Using the definitions of Ai and b(π ), we can write the last probability in terms of
convolutions of exponential distribution functions. Namely, for any t ≥ 0 we have

P[ϕ(X(t)) = 0 | � = π ] = P
[
A0 + · · · + Ab(π )−1 > t | � = π

]
= 1 − Conv

0≤i<b(π )
{1 − exp[−λ(Ei ) t]}. (16)

Let

G(π ) = P[ϕ(X(1)) = 0 | � = π ], (17)

as given in (16). Equation (15) can then be rewritten as

r = E[G(�)], (18)
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and this shows how the Permutation Monte Carlo simulation scheme works. Namely,
let �(1), . . . , �(N ) be independent-identically distributed random permutations, each
distributed according to �. Then

r̂ = 1

N

N∑
i=1

G
(
�(i)

)
(19)

is an unbiased estimator for r .

2.4. Merge process simulation

A closer look at the evolution of the Construction Process reveals that many of the above
results remain valid when we merge various states into “super states” at various stages
of the process. This is known as the Merge Process (MP). We briefly describe the main
ideas below (see Lomonosov, 1994 for a detailed description).

For a subset of edges F ⊆ E , the proper partition (in connected components) of the
subgraph G(V, F) (including isolated nodes, if any) is denote by σ = {V1, V2, . . . , Vk}.
Let Ii denote the edge-set of the induced subgraph G(Vi ). The set Iσ = I1 ∪ . . . ∪ Ik of
inner edges, that is, the edges within the components, is the closure of F (denoted by
〈F〉). Denote its complement (the inter-component edges) by Eσ = E\Iσ .

Let L(G) be the collection of all proper partitions of G(V, E). It is not difficult to
see that L(G) is a lattice, ordered by the relation τ ≺ σ ⇐⇒ Iτ ⊂ Iσ (that is, σ is
obtained by merging components of τ ).

Consider the Construction Process (X(t)) of the network. By restricting the process
(X(t)) to L(G) we obtain another Markov process (X(t)), called the Merge Process (MP)
of the network. This process starts from the initial state σ0 of isolated nodes and ends at
the terminal state σω corresponding to G(V, E).

For each σ∈L(G) the sojourn time in σ has an exponential distribution with pa-
rameter λ(σ ) = ∑

e∈Eσ
λ(e), independent of everything else. Moreover, the transition

probability from τ to σ (where σ is a direct successor of τ ) is given by:

λ(τ ) − λ(σ )

λ(τ )
.

Next, in analogy with the results for the Construction Process, we define a trajectory of
(X(t)) as a sequence θ = (σ0, σ1, . . . , σb), where b = b(θ ) is the first index i such that
σi is “up”, that is, the network is operational. By defining ϕ(X(t)) = ϕ(X(t)), we thus
have

r = P[ϕ(X(1)) = 0] = E[G(�)], (20)
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where � is a random trajectory of (X(t)). For each outcome θ = (σ0, . . . , σb) of �, G(θ )
is given by

G(θ ) = P[ϕ(X(1)) = 0 | � = θ ] = P
[
A0 + · · · + Ab(θ )−1 > 1 | � = θ

]
, (21)

where Ai is the sojourn time at σi . Therefore, G(θ ) is given by

1 − Conv
0≤i<b(θ )

{1 − exp[−λ(σi ) t]} (22)

evaluated at t = 1.

3. Estimating network reliability using the cross-entropy method

3.1. Cross-entropy and crude Monte Carlo

If we use the Construction Process idea of Section 2.3 in the Crude Monte Carlo frame-
work of Section 2.2, the Cross-Entropy method fits naturally. Instead of sampling the
up/down state of individual edges, we sample the up time of each edge. Then we check
if the network is functioning at time t = 1 and this probability is the network reliability.

In other words, translate the original problem (estimating r ), which involves inde-
pendent Bernoulli random variables X1, . . . , Xm , into an estimation problem involving
independent exponential random variables Y1, . . . , Ym . Specifically, imagine that we
have a time-dependent system in which at time 0 all edges have failed and are under
repair, and let Y1, . . . , Ym , with Yi ∼ Exp(u−1

i ) and ui = 1/λ(i) = −1/ log qi be the
independent repair times of the edges. Note that, by definition

P[Yi ≥ 1] = e−1/ui = qi i = 1, . . . , m.

Now, for each Y = (Y1, . . . , Ym) let S(Y) be the (random) time at which the system
“comes up” (the terminal nodes become connected). Then, we can write

r = P[S(Y) ≥ 1].

Hence, we have written the estimation of r in the standard rare event formulation of (7)
and thus can directly apply the Cross-Entropy method from de Boer et al. (2005).

Instead of sampling independently for each i from Exp(u−1
i ), we sample from

Exp(v−1
i ). The vector v = (v1, . . . , vm) is thus our reference parameter. We now construct

a sequence of pairs {(vt , γt )} such that vt converges to a reference vector close to the
optimal Cross-Entropy reference parameter and γt eventually reaches one. Starting with
v0 = u = (u1, . . . , um), at each iteration t we draw a random sample Y (1), . . . , Y (N )

from the pdf f (·; vt−1) of Y and update the level parameter using (8) and the reference
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parameter using (9), which in this case has the analytical solution

vt, j =
∑N

i=1 I
{

S(Y (i)) ≥ γt
}
W

(
Y (i); u, vt−1

)
Y(i) j∑N

i=1 I
{

S(Y (i)
) ≥ γt}W

(
Y (i); u, vt−1

) , (23)

where W is the likelihood ratio

W (y; u, v) = f (y; u)

f (y; v)
= exp

(
−

m∑
j=1

y j

(
1

u j
− 1

v j

)) m∏
j=1

v j

u j
. (24)

For instance, after iteration T when γT reaches one, we estimate r using Importance
Sampling as

r̂ = 1

N1

N1∑
i=1

I
{

S
(
Y (i)

) ≥ 1}W (
Y (i); u, vT

)
.

Example 2 (Bridge Network, CMC with CE). Consider now the bridge network of
Example 1. Since we have a 2-terminal network, the function S can be described in terms
of the maximal paths of the networks. In particular, we have

S(Y) = min
i

max
e∈Pi

Xe.

where P1 = {1, 4}, P2 = {2, 5}, P3 = {2, 3, 4} and P4 = {1, 3, 5} are the sets of
maximal paths, see (Barlow and Proschan, 1975; Lieber, Rubinstein, and Elmakis, 1997).
Suppose the “nominal” parameter vector is u = (0.3, 0.1, 0.8, 0.1, 0.2). From (11) the
exact unreliability is r̄ = 7.07868e – 05. A typical result of the simulations is given in
Table 1. The Cross-Entropy parameters used were: (initial) sample size N = 2000 and
rarity parameter ρ = 0.01 in (8). In both CMC and CE-CMC a final sample size of 106

was used.
By using the Cross-Entropy method we have achieved, with minimal effort, a 98%

reduction in variance (equivalent to a 50-fold speed-up) compared to the Crude Monte
Carlo method. The algorithm stopped after two iterations, as illustrated in Table 2. Notice
that the algorithm tilted the parameters of the mincut elements {1, 3, 5} to higher values
while lowering the rest.

Table 1
Results for CMC and CE-CMC.

r̂ r̂e ˆvar

CE-CMC 6.99111e – 05 0.0166777 1.35945e – 12
CMC 6.1e – 05 0.128033 6.09963e – 11

True value 7.07868e – 05
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Table 2
Convergence of the parameters.

t γ̂t v̂t

0 – 0.3 0.1 0.8 0.1 0.2
1 0.507 0.964833 0.216927 1.20908 0.0892952 0.567551
2 1.000 1.19792 0.120166 1.57409 0.0630103 1.15137

3.2. Cross-Entropy and permutation Monte Carlo

We now want to apply the Cross-Entropy method to the Permutation Monte Carlo sim-
ulation of Section 2.3. Instead of estimating r̄ using (19), we estimate it using Impor-
tance Sampling, where we apply a change of measure – determined by the Cross-Entropy
method – to the distribution of the random permutation �. There are many ways to define
a distribution on the space of permutations, see also Remark 2.1 below. However, note
that the original distribution of � is determined by the exponential distribution of Y . In
fact, � can be viewed as a function of Y . To see this, generate Y1, . . . , Ym independently
according to Yi ∼ Exp(u−1

i ) and order the Y ′
i s such that Y�1 ≤ Y�2 ≤ · · · ≤ Y�m . Then

take Π (Y) = (�1, . . . , �m) as our random permutation. We write (18) as

r = Eu[G(Π (Y))] = Eu[S(Y)], (25)

where we redefine S(Y) as G(Π (Y)), with G as in (17). A natural way of defining a
change of measure is to choose different parameters vi (instead of the nominal ui ) for
the exponential distributions of the edge lifetimes, in a similar way to Section 3.1. Thus
v = (v1, . . . , vm) is still the vector of mean “repair” times. However, we have a slightly
different situation from Section 3.1, because instead of having to estimate a rare event
probability P[S(Y) ≥ 1] we now have to estimate the (small) expectation E[S(Y)]. We
can no longer use a two-phase procedure (updating γ and v) but instead use a one-
phase procedure (6) in which we only update vt . The analytic solution to (6) for the i-th
component of vt is

vt,i =
∑N

k=1 S
(
Y (k)

)
W

(
Y (k); u, vt−1

)
Y(k)i∑N

k=1 S(Y (k)) W
(
Y (k); u, vt−1

) , (26)

where Y(k)i is the i-th component of Y (k). To improve convergence in random sampling
situations, it is often beneficial to use a smoothing parameter α to blend the old with the
new estimates. That is we take

v′
t = αvt + (1 − α)vt−1

as the new parameter vector for the next iteration.
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3.3. Cross-entropy and the Merge Process

For each permutation π in the Creation Process (PMC), there is a corresponding trajectory
θ in the Merge Process. Let Θ : π �→ θ be the mapping that assigns to each permutation
π the corresponding unique trajectory θ . Then (25) can be rewritten as

r = Eu[G(Θ(Π (Y)))] = Eu[S(Y)], (27)

where S(Y) has been redefined as G(Θ(Π (Y))), with G as in (21). Then the same Cross-
Entropy procedure (26) described in Section 3.2 can be applied to the Merge Process as
well.

Example 3 (Bridge Network, MP and PMC with CE). We return to the bridge network of
Example 2. Table 3 lists the results for the standard MP and PMC simulations, compared
with their counterparts with Importance Sampling in which the reference parameters
are determined by the Cross-Entropy method. The nominal reference parameter remains
unchanged u = (0.3, 0.1, 0.8, 0.1, 0.2), and we use the Cross-Entropy parameters α =
0.7 and N = 2000. The final sample sizes are N1 = 106 in all the original and Cross-
Entropy simulations.

We have repeated this experiment various times and have consistently found that
the Merge Process and the Permutation Monte Carlo have very close performance in
such a small example network. We also found that the Cross-Entropy technique provides
an improvement (reduction) in variance of roughly 20% in both cases.

Note that the Cross-Entropy with Crude Monte Carlo simulation still has over 100
times the variance of that in MP, CE-MP, PMC or CE-PMC simulations. This shows
that no matter how much one modifies the Crude Monte Carlo with smart sampling
techniques, it still cannot compare to the simple Permutation Monte Carlo sampling. It
is well known that conditional Monte Carlo methods such as the MP and PMC always
yield a variance reduction over CMC, see for example Section 5.4 of Rubinstein and
Melamed (1998). However, Table 3 also suggests that even though the Cross-Entropy
method does not provide the same percentage improvement as in the Crude Monte Carlo

Table 3
Results for CE-PMC and CE-MP.

r̂ r̂e ˆvar

CE-MP 7.08223e – 05 0.00116362 6.79140e – 15
MP 7.08109e – 05 0.00132036 8.74143e – 15
CE-PMC 7.07905e – 05 0.00120961 7.33236e – 15
PMC 7.07850e – 05 0.00132445 8.78930e – 15

CE-CMC 6.99111e – 05 0.01667770 1.35945e – 12
True value 7.07868e-05
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Table 4
Evolution of the reference parameters.

t vt

0 0.3 0.1 0.8 0.1 0.2
1 0.357676818 0.073782224 0.863431103 0.068991687 0.254756949
2 0.377520896 0.065074510 0.863118100 0.059496186 0.271816687
3 0.386880121 0.059557488 0.852180730 0.057643532 0.278509639

scheme, it is still worthwhile applying the technique to the “better” Merge Process or
Permutation Monte Carlo sampling schemes.

With the CE-MP or CE-PMC sampling, there is no parameter γ to indicate when
to stop the Cross-Entropy parameter tuning, therefore we need to use other strategies.
Since we have imprecise knowledge of the performance function, we have to resort to
simulation to evaluate that function at each point in order to optimize the function (4).
On the other hand, we do not want to spend too long on the CE parameter estimation
effort, compared to the real simulation. As a result, we cannot use classic convergence
criteria such as: stop when two consecutive vectors are ε close in some norm. Fortunately,
however, permutation (and trajectory) sampling depends on the relative weight of each
edge and hence it is fairly insensitive to the precise values of the Importance Sampling
parameter vt . Therefore we only require a vector that is in the “right” region.

Table 4 displays the evolution of the reference parameters for the CE-MP, where
we stopped the Cross-Entropy algorithm after only three iterations, when the estimates
“stabilised” (the values stop fluctuating). Notice again that the algorithm allocated more
attention to the mincut elements {1, 3, 5} and treated the rest as unimportant.

Remark 2.1 (Zero-variance IS Permutation/Trajectory Distribution). For a general net-
work, it is not difficult to find the ideal Importance Sampling distribution on the space
of all permutations. It is given by the pmf

g∗(π ) = G(�) f (π )

r̄
,

where f (π ) is the probability of the permutation π = (e1, . . . , em) occurring under the
original measures. For the Merge Process, g∗(θ ) is constructed in the same way. Under g∗

the Importance Sampling estimators have zero variance. Although this has little practical
value for large systems (for which we do not know r̄ ), it can be of help to construct and
test good Cross-Entropy sampling strategies.

4. Numerical experiments

In this section we give a few larger examples that might be found in communication
networks. Figure 2 shows a 3 × 3 and a 6 × 6 grid network, each network has four
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Figure 2. A 3 × 3 and a 6 × 6 grid network.

terminals at the corners. All links have the same failure probability. All experiments use
a final sample size of 106 and the Cross-Entropy tuning batch sample size of 5000. In the
tables, T denotes the CE tuning iteration and α denotes the smoothing parameter. The
CE-CMC had a rarity parameter ρ = 0.02.

For verification purposes, the exact network failure probabilities are evaluated and
listed as well. Note that in these trivial examples, alternative approaches such as the
Burtin-Pittel approximation (Burtin and Pittel, 1972; Gertsbakh, 2000) can also be used
to obtain fairly accurate results.

Example 4 (3 × 3 unreliable grid). In this example, all links of the 3 × 3 grid network
have the same failure probability q = 10−3. A typical result of the simulation is given in
Table 5.

The CMC method gives a poor variance and relative error as expected. The CE-
CMC shows a 95% reduction in variance but is still too high to make it very useful. The
PMC method gives a much smaller variance (0.1% of CE-CMC) and the Cross-Entropy
method achieved further reduction of 20–25% on average. The MP method has an even

Table 5
Simulation results for the 3 × 3 unreliable grid network.

T α r̂ r̂e ˆvar

CE-MP 10 0.1 4.01172e – 06 0.001071 1.84515e – 17
MP – – 4.01179e – 06 0.001122 2.02652e – 17
CE-PMC 10 0.1 4.01057e – 06 0.003420 1.88147e – 16
PMC – – 4.01609e – 06 0.003895 2.44653e – 16
CE-CMC 4 1 2.8296e – 06 0.150517 1.81393e – 13
CMC – – 4e – 06 0.499999 3.99998e – 12

True value 4.01199e – 06
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Table 6
Simulation results for the 3 × 3 reliable grid network.

T α r̂ r̂e ˆvar

CE-MP 10 0.1 3.99876e – 12 0.001076 1.85116e – 29
MP – – 4.00279e – 12 0.001127 2.03639e – 29
CE-PMC 10 0.1 4.00797e – 12 0.003455 1.91801e – 28
PMC – – 3.99354e – 12 0.003940 2.47621e – 28
CE-CMC 5 1 1.75878e – 12 0.176095 9.59220e – 26
CMC – – 0 undefined undefined

True value 4.00001e – 12

smaller variance (10% of PMC) and the Cross-Entropy method provides roughly a 20%
further reduction, making the CE-MP the most efficient method to use.

Example 5 (3 × 3 reliable grid). This example is the same as the last one except that the
link failure probability is q = 10−6. A typical result of the simulation is given in Table 6.

Clearly the failure probability in the order of 10−12 is well beyond the ability of
the CMC method with only 106 samples. The Cross-Entropy method helped to produce
some meaningful results, however the relative error is still rather high. On the other
hand the MP and PMC methods give accurate estimates and the Cross-Entropy method
consistently reduces their variance by around 10% in MP, and 20% in PMC. With the
variance in MP starting at less than 10% of that in PMC, it makes the CE-MP the best
performing method.

Example 6 (6 × 6 unreliable grid). This is a larger network example consisting of 36
nodes and 60 edges with equal link failure probability q = 10−3. A typical result of the
simulation is given in Table 7.

Again the CMC and CE-CMC methods cannot provide accurate estimates with 106

samples while the PMC, CE-PMC, MP and CE-MP give good results. Notice that in
this larger example, the Cross-Entropy method reduces the variance by about 65% in the

Table 7
Simulation results for the 6 × 6 unreliable grid network.

T α r̂ r̂e ˆvar

CE-MP 10 0.1 4.00239e – 06 0.001528 3.74067e – 17
MP – – 4.01041e – 06 0.001745 4.89923e – 17
CE-PMC 10 0.1 4.02088e – 06 0.011778 2.24284e – 15
PMC – – 3.95377e – 06 0.020306 6.44547e – 15
CE-CMC 4 1 1.32219e – 06 0.489052 4.18118e – 13
CMC – – 6e – 06 0.408247 5.99996e – 12

True value 4.00800e – 06
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Table 8
Simulation results for the 6 × 6 reliable grid network.

T α r̂ r̂e ˆvar

CE-MP 10 0.1 3.99869e-12 0.001533 3.75850e-29
MP – – 3.99755e-12 0.001750 4.89134e-29
CE-PMC 10 0.1 4.00455e-12 0.012755 2.60903e-27
PMC – – 4.00552e-12 0.020997 7.07316e-27
CE-CMC 5 1 8.62462e-14 0.907805 6.13007e-27
CMC – – 0 undefined undefined

True value 4.00001e-12

PMC. Compared to the previous examples, this network has a much larger population
size and variance. For instance, the 3×3 network has about 4.8×108 edge permutations
while the 6×6 network has about 8.3×1081. The MP has a reduced trajectory population
size, and has a much smaller sample variance (less than 1% of PMC). The Cross-Entropy
method still provides 25% reduction in variance in the CE-MP, making it the smallest of
all. Here, the Cross-Entropy method demonstrates its ability to find excellent Importance
Sampling parameter vectors to reduce the sample variance.

Example 7 (6 × 6 reliable grid). This example is the same as the last one except that the
link failure probability is q = 10−6. A typical result of the simulation is given in Table 8.

It has very similar findings to the last example: The CMC and CE-CMC methods
cannot handle such a low probability with 106 samples. The PMC provides good estimates
and yet the Cross-Entropy method reduces its sample variances further by about 65% in
the CE-PMC. The MP starts with a much lower (1%) sample variance than that of PMC
and the Cross-Entropy further reduces it by 25% in the CE-MP.

4.1. Summary of results

With a better “sampling structure” and smart conditioning, the Merge Process and the
Permutation Monte Carlo schemes are superior to the Crude Monte Carlo scheme. The
Cross-Entropy technique further improves the performance of the MP and the PMC
schemes, the degree of improvement becomes more prominent as the network size grows.
Close inspection of the Importance Sampling parameter vT reveals that all the bottleneck-
cut edges have been allocated a higher importance than the rest. Possible directions
for further research are a qualitative – rather than quantitative – study of the difference
between the methods and a theoretical analysis of complexity issues. Both of these are
out of the scope of this paper.

Another point to note is the smoothing parameter α. If we keep α = 0.7 as in
the bridge example, the Importance Sampling parameters v might oscillate instead of
converge to the optimal v∗ and as a consequence give poor estimates. We found that in
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larger networks, a smaller smoothing parameter such as α = 0.1 is much more robust
and always gave good results in our experiments. Numerical experience suggests that
an increase in the tuning sample size N can alleviate the need to reduce the smoothing
parameter α in larger problems. Of course, this means more effort has to be spent es-
timating the optimal Importance Sampling parameter v∗. However, if we leave α very
small, more iterations are required for convergence towards v∗. This raises the question
of the most efficient way to allocate effort in estimating v∗.

5. Conclusions

The Cross-Entropy technique gives substantial improvement over the Crude Monte Carlo
estimation of network reliability. However, no matter how much we improve the Crude
Monte Carlo sampling, it still cannot match the simple Permutation Monte Carlo or
the Merge Process sampling schemes. Therefore it is still better to apply the Cross-
Entropy technique to the latter schemes. In this paper, we showed how the Cross-Entropy
technique can be applied to further improve the Merge Process and the Permutation Monte
Carlo scheme. Furthermore, the examples suggested that the improvement can grow with
the network size as the technique has the ability to quickly “home in” to important edges.
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