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Abstract

Hamiltonian Monte Carlo and its descendants
have found success in machine learning and
computational statistics due to their ability
to draw samples in high dimensions with
greater efficiency than classical MCMC. One
of these derivatives, Riemannian manifold
Hamiltonian Monte Carlo (RMHMC), bet-
ter adapts the sampler to the geometry of the
target density, allowing for improved perfor-
mances in sampling problems with complex
geometric features. Other approaches have
boosted acceptance rates by sampling from an
integrator-dependent “shadow density” and
compensating for the induced bias via im-
portance sampling. We combine the bene-
fits of RMHMC with those attained by sam-
pling from the shadow density, by deriving the
shadow Hamiltonian corresponding to the gen-
eralized leapfrog integrator used in RMHMC.
This leads to a new algorithm, shadow man-
ifold Hamiltonian Monte Carlo, that shows
improved performance over RMHMC, and
leaves the target density invariant.

1 Introduction

Hamiltonian Monte Carlo (HMC) was first introduced
by Duane et al. (1987) in the context of simulating
lattice field theories in quantum chromodynamics. It
gained further mainstream success following its intro-
duction to the machine learning and computational
statistics communities for training Bayesian neural
networks (Neal, 1996). It has since become an in-
dispensable tool for Bayesian inference at large, finding
a plethora of applications in scientific and industrial
fields.
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The key advantage of HMC over many of its com-
petitors is its ability to draw samples that are large
distances apart by evolving them via Hamiltonian dy-
namics. The acceptance rate depends on the error
accumulated along the sample trajectory, and remains
large even in moderately high dimensions. This is in
no small part due to its deep connection with geometry
and physics, which inform its rich theoretical foun-
dations (Betancourt et al., 2017; Barp et al., 2018).
However, HMC’s performance deteriorates if either the
step size or the size of the system becomes too large, or
the target density is poorly behaved. More numerical
error leads to lower sample acceptance, which induces
heavy autocorrelation, necessitating a larger sample
size and thus higher computational costs.

One approach to ease this burden is to exploit the struc-
ture of the numerical integrator error and instead target
the density corresponding to a modified, or shadow,
Hamiltonian. This leads to a higher sample acceptance
rate, shown in Figure 1, at the cost of some induced
bias. This bias is easily quantified, and importance
sampling is then performed to compensate (Radivojević
& Akhmatskaya, 2019). Due to the structure of the
shadow Hamiltonian, momentum refreshment requires
another Metropolis–Hastings step to ensure sampler
consistency. This results in a non-reversible sampler,
and allows for partial momentum retention (Horowitz,
1991; Kennedy & Pendleton, 2001; Akhmatskaya &
Reich, 2006; Sohl-Dickstein, 2012; Sohl-Dickstein et al.,
2014), which may be of interest on its own.

In their landmark paper, Girolami & Calderhead (2011)
proposed Riemannian manifold Hamiltonian Monte
Carlo (RMHMC). This algorithm draws upon ideas
from information geometry (Amari, 2016) to generalize
HMC by traversing a Riemannian manifold. While
other special classes of Riemannian manifolds have
recently been studied (Barp et al., 2018, 2019), the
original implementations target Bayesian posterior den-
sities, and excel in the presence of complex geometric
features. However, to date, there have been no efforts
to develop a shadow Hamiltonian corresponding to the
generalized leapfrog algorithm used in RMHMC.
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Figure 1: Error due to Hamiltonian drift (left), and corresponding Metropolis–Hastings acceptance probabilities (right), in
posterior samples from a Bayesian logistic regression model using the Australian credit dataset. 2000 proposed parameter
samples were produced via RMHMC and our proposed SMHMC with h = 0.5, L = 6.

Contributions. Our contributions in this work can
be summarized as follows.

I. A fourth-order shadow Hamiltonian that is preserved
by the generalized leapfrog integrator up to O(h4) in
the step size h is derived.

II. We prove the existence of shadow Hamiltonians of
any even order for arbitrary non-separable Hamiltoni-
ans and reversible symplectic integrators.

III. We introduce the shadow manifold Hamiltonian
Monte Carlo algorithm (SMHMC), which is guaranteed
to leave the target density invariant.

IV. Numerical examples are provided demonstrating
advantages over existing alternatives.

V. A PyTorch implementation is made available at
https://github.com/chrisvdh/shadowtorch.

2 Hamiltonian Monte Carlo

Markov chain Monte Carlo (MCMC) sampling tech-
niques are a mainstay of computational statistics and
machine learning. Many problems in scientific, medical,
and industrial applications can be framed as Bayesian
hierarchical problems, and their resolution often re-
duces to sampling from a posterior distribution in order
to approximate some (often high-dimensional) analyti-
cally intractable integral. HMC is a highly successful
MCMC technique that is somewhat resilient to the
curse of dimensionality, without compromising conver-
gence guarantees (Livingstone et al., 2016).

The goal of MCMC is to generate a set of correlated
samples {θi}ni=1 whose empirical distribution converges,
as n → ∞, to a target measure with Lebesgue den-
sity πθ on Rd. This enables the approximation of
the integral Eπf =

∫
Rd f(θ)πθ(θ) dθ of a πθ-integrable

function f : Rd → R via the Monte Carlo estimate
n−1

∑n
i=1 f(θi). In the sequel, we assume that all rel-

evant functions are infinitely differentiable, although
this can be relaxed in practice.

2.1 The Basic Setup

For a target density πθ, let U : Rd → R be a potential
energy function on the configuration space of a Hamil-
tonian system such that πθ(θ) := e−U(θ)/Z, where Z
is a constant that ensures that πθ integrates to unity.
Under this interpretation, “energy wells” with low po-
tential energy correspond to regions of high probability.
In the basic HMC setup, the configuration space is aug-
mented with a conjugate momentum variable p ∈ Rd,
which is assigned a non-negative kinetic energy term
K : Rd → R, typically taken to be K(p) = p>Σ−1p/2.
Here, Σ is a real-valued positive-definite d× d matrix,
commonly taken to be the identity or some other diago-
nal matrix. Under this choice, the conjugate momenta
are assumed to be distributed via a multivariate Gaus-
sian density πp(p) := e−K(p)/

√
(2π)d|Σ|, where we

denote by |Σ| the determinant of Σ. The Hamiltonian
of the system is then defined by H(θ, p) := U(θ)+K(p),

https://github.com/chrisvdh/shadowtorch
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with the joint density of θ and p satisfying

πH(θ, p) :=
e−H(θ,p)

Z
√

(2π)d|Σ|
= πθ(θ)πp(p). (1)

RMHMC is a method introduced by Girolami & Calder-
head (2011) that generalises HMC by endowing Rd with
a Riemannian metric, and sampling from the resulting
Riemannian manifold (M,G). In the basic implemen-
tation, the statistical manifold M is equipped with a
metric G, taken to be a variant of the Fisher–Rao met-
ric that incorporates the Bayesian prior. This metric
gives a canonical way to measure the squared length
of a momentum p at θ, which is incorporated into
the kinetic energy term K(θ, p) = p>G−1(θ)p/2. This
term is now position-dependent, and the corresponding
conditional density becomes

πp|θ(θ, p) :=
e−K(θ,p)√
(2π)d|G(θ)|

.

The determinant term is then incorporated into the
Hamiltonian

H(θ, p) := U(θ) +
1

2
log
(
(2π)d|G(θ)|

)
+K(θ, p), (2)

and by construction the joint density is then given by

πH(θ, p) :=
e−H(θ,p)

Z
= πθ(θ)πp|θ(θ, p).

Given some initial pair z0 = (θ0, p0), (RM)HMC algo-
rithms then draw a candidate sample from the joint
density πH by evolving the phase z0 along a trajectory
in phase space defined by Hamiltonian dynamics.

2.2 Hamiltonian Dynamics

The key component of HMC is Hamilton’s equations of
motion: for time t ∈ R and z(t) = (θ(t), p(t)), let

dθi

dt
=
∂H

∂pi
,

dpi

dt
= −∂H

∂θi
, (3)

or more succinctly

dz

dt
= J∇H(z), where J :=

(
0 Id×d

−Id×d 0

)
, (4)

and Id×d is the d-dimensional identity matrix. The
following three properties of Hamiltonian dynamics are
key (see Neal (2010)).

1. Conservation of energy: It is immediate from
equation (3) that the vector field dz/dt lies orthogonal
to the gradient vector field of H; that is,

dH

dt
=

d∑
i=1

∂H

∂θi
dθi

dt
+
dpi

dt

∂H

∂pi
= (∇H)>J∇H = 0.

2. Reversibility: Let ϕHt (z0) denote the unique solu-
tion at time t to (3) with initial value z0. Since H is
time-homogeneous, there holds

ϕHt ◦ ϕHs (z0) = ϕHs+t(z0); i.e., ϕH−t ◦ ϕHt (z0) = z0,
(5)

or, in other words, ϕH−t = (ϕHt )−1. Furthermore, if K
is an even function, then we can obtain the inverse
mapping by negating the sign of p, applying ϕt, and
then negating p’s sign again.

3. Volume preservation: Taking an open neigh-
bourhood N ⊂ R2d and evolving N by ϕt reveals
m(φt(N)) = m(N), where m is the Lebesgue mea-
sure on R2d. This is most easily seen by noting that
the Hamiltonian vector field J∇H is divergence free,
that is,

∇ · J∇H =

d∑
i=1

∂

∂θi
∂H

∂pi
− ∂

∂pi
∂H

∂θi
= 0.

Given a candidate sample obtained by evolving the
system (3) up to time T , these three properties allow
for a simple Metropolis–Hastings acceptance criterion.
Reversibility of the dynamics implies reversibility of
the resultant Markov chain — therefore, the sampler
leaves the target density invariant. Conservation of
energy suggests a means of detecting numerically ap-
proximated trajectories that have not been faithful to
(3) by computing H

(
z(T )

)
−H(z0), and volume preser-

vation removes the need to keep track of a Jacobian in
this change of variables. This allows proposed samples
to be accepted with probability

α = min
{

1, exp
(
H(θ, p)−H(θ(T ), p(T ))

)}
, (6)

and otherwise taking (θ,−p). This final momentum
flip is to guarantee reversibility.

Finally, it is worth mentioning that while properties 1–3
are certainly desirable, they are by no means necessary
for an effective sampling algorithm. Accurate samplers
have been constructed that break each of these condi-
tions (Lan et al., 2015; Radivojević & Akhmatskaya,
2019). In these scenarios, greater care must be taken
to ensure invariance to the correct target density.

2.3 Symplectic Integrators

Exact solutions to (3) are accepted with probability
one, but are unavailable in non-trivial settings. Instead,
it is necessary to approximate the solutions via numeri-
cal integration techniques. Doing so no longer preserves
the Hamiltonian, and so changes the acceptance prob-
ability. Approximation errors and their corresponding
Metropolis–Hastings acceptance probabilities for sam-
ples drawn from a Bayesian logistic regression posterior
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density on a standard dataset are shown in Figure 1.
Fortunately, there is a well studied, highly accurate
family of geometric numerical integrators that preserve
volume. These are known as symplectic numerical in-
tegrators, whose one-step map Φ : R2d → R2d satisfies

DΦ(z)>JDΦ(z) = J , where
(
DΦ(z)

)>
denotes the

2d×2d Jacobian of Φ at z (Bou-Rabee & Sanz-Serna,
2017).

It is clear from this definition that the composition of
two symplectic maps is also symplectic, which allows
us to approximate dynamics along lengthy trajectories
by composing chains of short symplectic steps. We
will see in Section 3.1 that by enforcing our numerical
integrator to be symplectic, we can compute a family
of modified or shadow Hamiltonians that are conserved
up to arbitrary order in the step size.

In the Euclidean case (HMC), the Hamiltonian is sepa-
rable; that is, H(θ, p) = U(θ) +K(p). Systems of this
type admit a certain type of decomposition or splitting,
since the Hamiltonian vector field also decomposes into
J∇H(z) = J∇U(θ) + J∇K(p). This induces the pair
of split systems

dθi

dt
=
∂K

∂pi
,
dpi

dt
= 0 and

dpi

dt
=
∂U

∂θi
,
dθi

dt
= 0. (7)

Individually, these systems are analytically solvable
for arbitrary times. However, doing so results in large
errors, due to the effective decoupling caused by the
splitting. By using a relatively small step size, we can
mitigate this error by iterative updates, each of which
exactly solves the split systems (7){

ψUh (θn+1, pn) := pn − h∂U∂θ (θn+1) = pn+1,

ψKh (θn, pn) := θn + h∂K∂p (pn) = θn+1.
(8)

While each of these steps is reversible, their composition
is not. Instead, by composing (8) with its reversal, we
obtain the palindromic Störmer-Verlet scheme

pn+ 1
2

= pn − h
2
∂U
∂θ (θn),

θn+1 = θn + h∂K∂p (pn+ 1
2
),

pn+1 = pn+ 1
2
− h

2
∂U
∂p (θn+1),

(9)

which is accurate up to O(h2). This integrator is re-
versible, since (ψU−h/2 ◦ ψ

K
−h ◦ ψU−h/2) ◦ (ψUh/2 ◦ ψ

K
h ◦

ψUh/2)(z0) = z0. A number of higher-order integrators

have also been studied (Yoshida, 1990; Radivojević
et al., 2018), and more recently applied to problems
in Bayesian statistics (Radivojević & Akhmatskaya,
2019).

In order to approximate a trajectory up to time T = hL

for some L ∈ N, we simply compose (9) L times

ΦNh :=

L times︷ ︸︸ ︷
(ψÛh/2 ◦ ψ

K̂
h ◦ ψÛh/2) ◦ · · · ◦ (ψÛh/2 ◦ ψ

K̂
h ◦ ψÛh/2) .

(10)

When considering Hamiltonians of the form (2), up-
dates of the form (8) based on approximations given
by (7) do not have unit Jacobian determinant, and
do not provide reversible updates (Girolami & Calder-
head, 2011). Instead, standard implementations employ
an implicit numerical integrator called the generalized
leapfrog algorithm to address these issues.

The generalized leapfrog method is constructed in the
same way as the leapfrog method. By composing two
partitioned Euler methods, a symplectic method is
obtained (Hairer et al., 2006, VI.3). The updates with
step-size h are of the form
pn+ 1

2
= pn − h

2∇θH
(
θn, pn+ 1

2

)
,

θn+1 = θn + h
2∇p

[
H
(
θn, pn+ 1

2

)
+H

(
θn+1, pn+ 1

2

)]
,

pn+1 = pn+ 1
2
− h

2∇θH
(
θn+1, pn+ 1

2

)
.

(11)
This method is again accurate up to second order in
h, and again, we compute the trajectory up to time
T = hL by composing (11) L times, analogous to (10).
The distinguishing feature here is that each variable
on the left hand side of the first two lines in (11) also
appear on the right hand side, that is, it is implicitly
defined.

The immediate drawback of implicit numerical meth-
ods is that, in contrast to (8), the sub-problems can
no longer be exactly solved. Fixed point iterations are
commonly used to approximate the updates, although
other implicit methods for Euclidean HMC have been
proposed that employ Newton’s method (Pourzanjani
& Petzold, 2019). Recently, an explicit method has
also been developed (Cobb et al., 2019) based on an ap-
proach for approximating the dynamics of systems with
non-separable Hamiltonians in the physics literature
(Tao, 2016; Pihajoki, 2015). This technique does so
by simulating parallel problems on an extended phase
space (the product space of two copies of the cotangent
bundle), with a ‘binding step’ in between. The inte-
grator is computationally cheaper than (11), and has
a known fourth-order shadow Hamiltonian (Tao, 2016).
However, it is not clear how to incorporate this into
a shadow HMC algorithm in a way that ensures the
resulting sampler leaves the target density invariant.
Furthermore, it introduces an extra binding hyperpa-
rameter, which the stability of the trajectories appear
to depend upon in a delicate way.
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3 Shadow Manifold Hamiltonian
Monte Carlo

HMC methods rely on the numerical integrators’ accu-
rate simulation of the trajectories dictated by Hamil-
tonian dynamics. However, leapfrog and generalized
leapfrog integrators only preserve the Hamiltonian up
to second order. In order to increase accuracy, one
could design more accurate integrators, although these
tend to be computationally expensive. Our approach
relies on backwards error analysis to instead derive a
shadow Hamiltonian, whose energy is more accurately
conserved by the generalized leapfrog algorithm. By
instead targeting the corresponding shadow density, we
see higher sample acceptance probabilities (Figure 1).
Importance sampling is then employed to correct these
samples towards the true density. This efficient combi-
nation of MCMC and importance sampling allows for
even greater performance than either strategy alone.

3.1 Shadow Hamiltonians

Shadow Hamiltonians are commonly obtained by trun-
cating the Baker–Campbell–Hausdorff (BCH) formula
applied to Poisson brackets of the terms of a sepa-
rable Hamiltonian (Barp et al., 2018). Since short-
time solutions to Hamilton’s equations are realized as
an exponential of the Hamiltonian vector field, the
BCH formula gives us a way to track the approxi-
mation error induced by iterative composition of the
non-commutative split vector fields. The underlying al-
gebraic relationship between Hamiltonian vector fields
and Hamiltonians provides a clean representation in
terms of an asymptotic expansion of nested Poisson
brackets. This expansion, when truncated to an appro-
priate order, reveals the shadow Hamiltonian.

Recall that for the leapfrog integrator (8), the Hamilto-
nian vector field can be split into two orthogonal vector
fields, J∇U and J∇K. By applying the BCH formula
to each composition in (9), the fourth–order shadow
Hamiltonian for the leapfrog integrator with step size
h (Radivojević & Akhmatskaya, 2019) is obtained:

HL = H +
h2

12
{K, {K,U}} − h2

24
{U, {U,K}} (12)

= H +
h2

12
p>M−1UθθM

−1p− h2

24
∇U>M−1∇U,

where the Poisson bracket satisfies {f, g} = ∂f
∂θi

∂g
∂pi −

∂f
∂pi

∂g
∂θi . Here, we denote the Hessian of U by Uθθ and

suppress dependence on θ and p.

However, the generalized leapfrog integrator is more
delicate. The BCH formula can only be naively ap-
plied to time-homogeneous systems of ODEs, and its
implicit nature means that it can no longer be split

into time-homogeneous Hamiltonian vector fields. Tak-
ing a continuous extension of (11) in t, we have that
(θ(t), p(t)) satisfies

q(t) = p0 − t
2∇θH

(
θ(t), q(t)

)
,

θ(t) = θ0 + t
2∇p

[
H
(
θ0, q(t)

)
+H

(
θ(t), q(t)

)]
,

p(t) = q(t)− t
2∇θH

(
θ(t), q(t)

)
.

(13)
Differentiating and solving for (dθ/dt, dp/dt), we find
that the vector field governing the system varies with
time. This necessitates a different approach.

To compute the fourth–order shadow Hamiltonian,
we must first identify its corresponding vector field
up to third order. This is done by a comparing the
third–order Taylor expansions of the discretized solu-
tion

(
θ̂(h), p̂(h)

)
, and the analytic solution

(
θ(h), p(h)

)
.

By appropriately integrating the vector field with re-
spect to θ and p, we can then identify the fourth–order
shadow Hamiltonian H[4].

Theorem 1. Let M = Rd, and H : Rd × Rd → R
be a smooth Hamiltonian function. The fourth–order
shadow Hamiltonian function H[4] : Rd → R corre-
sponding to the generalized leapfrog integrator is given
by

H[4](θ, p) = H(θ, p) +
h2

12

(
∇pH∇θθH∇pH (14)

− 1

2
∇θH∇ppH∇θH

+∇θH∇θpH∇pH
)
.

Comparing equations (14) and (12), we note an ad-
ditional term containing mixed partial derivatives of
the Hamiltonian in θ and p. Consequently, when the
Hamiltonian is separable (as in the Euclidean case), we
recover (12).

The complete proof is tedious, and is relegated to the
supplementary material. In our implementation, the
second term in (14) is computed using quantities al-
ready required for the dynamics, while the other terms
of the shadow Hamiltonian can be computed using au-
tomatic differentiation. Judicious use of matrix-vector
products allows this to be done in a way that doesn’t
dominate the O(d3) complexity of matrix inversion or
decomposition. Difference quotient approximations,
such as those used by Radivojević & Akhmatskaya
(2019), could also be applied.

Proceeding further, this construction can be extended
to obtain shadow Hamiltonians of arbitrary even order.
Since modern statistical applications are increasingly
concerned with more exotic spaces, it is natural to
ask if such a construction could be considered on, for
example, spheres and Stiefel manifolds. Hairer (2003)
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provides local results, and a construction when the
manifold M is given by a level set of a known smooth
function. For another broad class of manifolds, and
any reversible symplectic numerical integrator, we have
the following global result.

Theorem 2. Let M be a smooth simply connected
Riemannian manifold with cotangent bundle T ∗M , and
let H : T ∗M → R be smooth Hamiltonian function.
Then for any fixed reversible symplectic integrator, there
exists a family of shadow Hamiltonians H[2k] : T ∗M →
R indexed by k ∈ N, such that H[2k] is preserved by the
integrator (11) with step size h up to O(h2k).

Here we have required the topological property that the
base manifold is simply connected. Roughly speaking,
this means that the manifold has no ‘holes’, which is
satisfied by a wide class of manifolds that may be of
interest in statistical applications. However, known
HMC methods on these classes of manifolds are either
constructed using constrained Hamiltonians (Brubaker
et al., 2012), or directly exploit additional structure in
their geometry (Barp et al., 2019). In either case, the
generalized leapfrog integrator is not used, so Theo-
rem 1 cannot be used directly. However, the procedure
used in its proof can be applied to obtain a local shadow
Hamiltonian, providing avenues for future research.

The proof of Theorem 2, also relegated to supplemen-
tary material, is a straightforward consequence of de
Rham’s theorem (Warner, 2013). While this is a basic
result in algebraic and differential topology, it’s largely
unknown to the statistics and machine learning com-
munities. We remark that for fixed positive h, one may
expect H[2k] to diverge as k →∞.

Upon inspection of (14), we notice that Hamiltonians
of the form (2) may not amount to desirable tail be-
haviour, which can cause difficulties in integrability
of the resulting shadow density, and may provide an
obstruction to geometric ergodicity. To remedy this,
we can follow Izaguirre & Hampton (2004) and set

H(θ, p) := max
{
H[4](θ, p) + c,H(θ, p)

}
, (15)

where c is a constant that is chosen by the practi-
tioner. This guarantees that the tail behaviour of H
is always dictated by the Hamiltonian itself, which in
turn controls the asymptotic decay of the density and
the performance of subsequent importance sampling.

3.2 Momentum Refreshment

A key distinction between shadow Hamiltonian meth-
ods and regular HMC is that the shadow density’s con-
ditional density πH(p | θ) is no longer Gaussian. This
means that näıvely sampling new Gaussian momenta
and accepting with probability one no longer leaves

the conditional density invariant. Moreover, we can
no longer expect to be able to analytically marginal-
ize out the momenta. This was initially circumvented
via rejection sampling (Izaguirre & Hampton, 2004).
At each refreshment step a new momentum proposal
can be generated p̂ ∼ N (0, G(θ)), and accepted with
probability min

{
1, exp(H(θ, p̂)−H(θ, p))

}
. If the new

momentum is rejected, this is repeated until a sample
is accepted. This results in a method that more ac-
curately reflects the original implementation of HMC;
however, repeated rejection can result in many compu-
tationally expensive shadow Hamiltonian evaluations.

More recent approaches utilize partial momentum re-
freshment via an additional Metropolis–Hastings step;
see Kennedy & Pendleton (2001); Akhmatskaya & Re-
ich (2006) and also Radivojević & Akhmatskaya (2019)
for a brief review. In this regime, an auxiliary noise vec-
tor u ∼ N (0, G(θ)) is drawn and a momentum proposal
is generated via the mapping R : Rd × Rd → Rd × Rd
that satisfies

R(p, u) = (ρ p+
√

1− ρ2 u,−
√

1− ρ2 p+ ρ u).

The new parameter ρ = ρ(θ, p, u) takes values in
(0, 1] and controls the extent of the momentum re-
tention. The proposals are then accepted according
to the modified density corresponding to H(θ, p, u) =
H(θ, p) + 1

2u
>G−1(θ)u. The updated momentum is

then taken to be{
ρ p+

√
1− ρ2 u with probability γ,

p otherwise,

where

γ := max
{

1, exp
(
H(θ, p, u)−H(θ,R(p, u))

)}
. (16)

This procedure results in a Markov chain that preserves
some of the dynamics between subsequent samples.
Note that ρ introduces another degree of freedom into
the sampler, and can be chosen to depend on θ and p.

3.3 The SMHMC Sampler

An algorithmic description of the SMHMC sampler
is provided in Algorithm 1. Since the sampler now
involves a composition of two reversible Metropolis–
Hastings steps, the resulting Markov chain is no longer
reversible. By breaking the detailed balance relations,
it is no longer immediately clear that the target density
is stationary, and so this must be demonstrated. To
this end we have the following guarantee, the proof of
which is taken from Radivojević & Akhmatskaya (2019)
or Fang et al. (2014), after noting that the explicit form
of the shadow density plays no role.

Theorem 3. The SMHMC sampler leaves the target
density πH invariant.
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Algorithm 1: SMHMC

1: Input: maximum number of steps L, step size h,
Riemannian metric G, momentum update
parameter ρ, number of Monte Carlo samples n,
initial values (θ0, p0).

2: for i = 1 to k do
3: sample number of steps l from {1, . . . , L}.
4: store (θ, p)← (θi−1, pi−1).
5: sample momentum update proposal

u ∼ N (0, G(θ)).

6: update p← ρ p+
√

1− ρ2 u with probability γ,
defined in (16).

7: compute the Shadow Hamiltonian H(θ, p).
8: integrate Hamiltonian Dynamics

(θ̂, p̂)← Φlh(θ, p).

9: accept sample (θi, pi)← (θ̂, p̂) with probability
β, and reject (θi, pi)← (θ,−p) otherwise. Here,
β = min{1, exp(−∆H)}.

10: compute the importance sampling weights
wi = exp

(
H(θi, pi)−H(θi, pi)

)
11: end for
12: return (θi, pi, wi)

k
i=0

Of course, the target density of the SMHMC sampler
is proportional to exp

(
− H(θ, p)

)
, and is therefore

not the target density πθ in general. In order to cor-
rect for this bias, samples can then be reweighted via
importance sampling, with the i-th sample’s weight
given by the exponential shadows wi = exp

(
H(θi, pi)−

H(θi, pi)
)
. Integrals of the form

∫
Rd f(θ)πθ(θ) dθ =∫

Rd×Rd f(θ)πH(θ,p)
πH(θ,p)πH(θ, p) dθ dp can then be approxi-

mated via the importance sampling estimator In(f) =∑n
i=1 w̄if(θi), where w̄i = wi/(

∑n
i=1 wi) are the nor-

malized weights.

One potential drawback of importance sampling is its
deterioration in performance as the sampling and target
densities grow far apart. Fortunately, the smoothness of
(14) guarantees pointwise control over the behaviour of
the weights in the continuous limit. A Taylor expansion
of wi in view of (14) shows that wi = 1 +O(h2) almost
surely as h→ 0+. The performance in the importance
sampling step should be adequate provided h is not
too large.

4 Numerical Experiments

We consider three test problems to demonstrate the dy-
namics and performance of SMHMC. The first is a toy
example that illustrates the dynamics of SMHMC com-
pared to HMC, MMHMC (Radivojević & Akhmatskaya,
2019) and RMHMC. We then consider performance in
a basic statistical problem, namely a Bayesian Logistic

Figure 2: Trajectories of the first 20 samples of the banana-
shaped density drawn by HMC, MMHMC, RMHMC and
SMHMC. Accepted samples are denoted by red dots.

Regression model, over various benchmark datasets.
This is a standard example where RMHMC outper-
forms HMC in low dimensions, but begins to struggle
in higher dimensions. We then turn our attention to
Neal’s funnel problem (Neal, 2003), which is a simple
example that captures the pathological geometric fea-
tures typical of those found in Bayesian hierarchical
models. Performance is measured via sample accep-
tance rate, minimum effective sample size (ESS), and
ESS per second; details on their computation are pro-
vided in the supplementary material.

4.1 Banana-shaped Density

The banana-shaped density is a variant of the Rosen-
brock function suggested by Bornn and Cornebise in
their discussion of Girolami & Calderhead (2011) as
an example with strong ridge-like geometric features
typical of those found in non-identifiable models. We
tested the dynamics of SMHMC, RMHMC, HMC and
MMHMC in sampling the two-dimensional posterior
density π(θ | y) based on the following model:

y | θ ∼ N (θ1 + θ22, σ
2
y), θ1, θ2 ∼ N (0, σ2

θ).

Following Lan et al. (2015); Radivojević &
Akhmatskaya (2019), one hundred data points
{yi}100i=1 are generated with θ1 + θ22 = 1, σy = 2 and
σθ = 1. Samples are then drawn from the posterior
density across our range of samplers. The dynamics of
the HMC, MMHMC, RMHMC and SMHMC samplers
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Table 1: Summary of acceptance rates, minimum effective sample size, and minimum effective sample size per second for
posterior samples of Bayesian logistic regression on four datasets. Reported values are averaged across 10 chains.

Acceptance minESS minESS/s
Data set d h α RMHMC SMHMC RMHMC SMHMC RMHMC SMHMC
Australian 15 0.5 100 0.9237 0.9929 5167.19 6212.87 56.0732 52.6366
German 25 0.5 100 0.8933 0.9727 3758.42 5452.45 35.1639 40.9878
Parkinson’s 46 0.3 1 0.9391 0.9933 1553.08 2469.34 14.4799 17.8577
Sonar 61 0.3 1 0.8898 0.9639 1371.66 2273.69 9.5294 12.9841

are illustrated in Figure 2. This example clearly
delineates the effect of the geometric adaptation on
the sampler’s dynamics, while the partial momentum
retention’s effects are less pronounced.

4.2 Bayesian Logistic Regression

Bayesian Logistic Regression is a standard tool for
binary classification that is ubiquitous in the medical,
scientific, engineering, and financial fields to name a
few (Gelman et al., 2004). We present results from
the analysis of four datasets, retrieved from the UCI
Machine Learning Repository (Dua & Graff, 2017).

As a common practice, the dataset is centred and nor-
malized to have zero mean and unit variance in each
dimension. The potential U(θ) is then taken to be the
negative log–likelihood of the data at θ, and a Gaussian
prior with variance α on each of the parameters is im-
posed. We took the metric G to be the prior-adapted
Fisher information from Girolami & Calderhead (2011),
estimated via the (positive-definite) negative empirical
Hessian. To this end, 10 chains of 5000 samples were
drawn from the posterior of each dataset, after 500
samples of burn–in. We set ρ = 0.25 in the SMHMC
sampler. Results are presented in Table 1.

4.3 Neal’s Funnel Density

The funnel density was suggested by Neal (2003) as
a sampling problem that exhibits behaviour typical
of pathologies that arise in Bayesian hierarchical and
latent variable models, particularly those with sparse
datasets (Betancourt & Girolami, 2015). The model
treats the variance of the parameters as a latent log-
normal random variable, which leads to non-convex
exponential cusping behaviour in the negative log-
density. Neal (2003) considered a 10-dimensional fun-
nel — here, we instead consider a 30-dimensional
example. The target density is defined to satisfy
π(θ, v) := N

(
v | 0, 9

)∏29
i=1N

(
θi | 0, ev

)
. This is a prob-

lem for which HMC typically demonstrates poor per-
formance (Betancourt, 2013; Cobb et al., 2019), and
struggles to draw samples from inside the ‘throat’ of
the funnel. Since the negative log-density is highly
non-convex, the SoftAbs metric is employed to give a
positive definite approximation of the expected Hessian,
while retaining its eigenvectors (Betancourt, 2013).

We ran 10 chains of 2000 samples each for the HMC,
RMHMC and SMHMC samplers on a 30-dimensional
funnel. Following a few pilot runs, a step-size of h = 0.3,
with a maximum of 64 leapfrog steps per sample tra-
jectory was chosen for the geometric algorithms. For
HMC, these hyperparameters were set to 0.075 and 500.

Figure 3: Samples drawn via HMC, RMHMC and SMHMC on the first two dimensions of a 30-dimensional funnel.
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Table 2: Summary of acceptance rates, minimum effective
sample size, and minimum effective sample size per second
for samples drawn from funnel density. Reported values
are averaged across 10 chains.

Accept minESS minESS/s
HMC 0.9771 7.32 0.0220

RMHMC 0.9576 397.48 1.0311
RMHMCρ 0.9640 550.01 1.3706
SMHMC 0.9878 545.29 1.3167
SMHMCρ 0.9843 578.25 1.4003

The momentum retention ρ was set to zero and 0.25
in the RMHMC/SMHMC and RMHMCρ/SMHMCρ
variants, respectively. Figure 3 shows the locations of
these samples. The SMHMC sampler exhibits com-
parable throat penetration to the RMHMC sampler.
Acceptance rates, minimum ESS and minimum ESS
per second are reported in Table 2.

5 Conclusion

We have extended shadow Hamiltonian Monte Carlo
methods by deriving the shadow Hamiltonian gener-
ated by the generalized leapfrog numerical integrator.
The resulting SMHMC algorithm shows promise as
a means of pushing past the limitations of RMHMC
while retaining the advantages of adapting the sampler
to the geometry of the target density. SMHMC shows
promise for deployment in complex higher-dimensional
hierarchical Bayesian models, where the dimensionality
causes RMHMC’s performance to wane.
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SUPPLEMENTARY MATERIALS

A Effective sample size

A common measure of the efficiency of a sampling algorithm is the effective sample size (ESS), representing the
estimated equivalent number of iid samples drawn. For (unweighted) Markov chains, motivated by Markov chain
central limit theory, it is typical to consider ESS in each dimension defined via

ESSMC :=
n

1 + 2
∑T
i=1 ρ̂i

, (17)

where ρ̂i is an estimate of the lag-i autocorrelations of the Markov chain, and T is the stopping time given in
Section 11.5 of Gelman et al. (2004). Following Girolami & Calderhead (2011), we account for the worst case
performance in the chain by reporting the minimum of (17) taken over all dimensions in the chain.

There is some ambiguity when comparing notions of effective sample size for Markov chains that have been
reweighted via importance sampling. For n samples reweighted by importance sampling, Kish’s approximation to
the ESS, given by

ESSK :=

(
n∑
j=1

w̄2
j

)−1
, (18)

where w̄j = wj/
∑n
k=1 wk, is most common. Roughly speaking, this accounts for the shift in sampling efficiency

caused by imbalances in the importance sampling weights. One may verify for equally weighted samples (w̄j = 1/n
for all j = 1, . . . , n) that ESSK = n. Motivated by this approximation, in order to account for both the effects of
both sample autocorrelation and reweighting via importance sampling, we approximated the effective sample size
under importance sampling by

ESS :=
ESSK
n

ESSMC =

(∑n
j=1 w̄

2
j

)−1
1 + 2

∑T
i=1 ρ̂i

, (19)

which also reduces to (17) when all the samples are weighted by unity. Once again, we report the minimum of
(19) taken across all dimensions in the chain to account for worst case performance.

B Proofs

In this section, we provide proofs of Theorem 1 and Theorem 2.

Proof of Theorem 1. As outlined in the main text, the strategy is as follows. First, we consider a third–order
Taylor expansion of the symplectic transformation implicitly defined by varying the step–size in the generalized
leapfrog integrator. Since the integrator is reversible, Theorem 2.2 in Chapter IX of Hairer et al. (2006) guarantees
that the fourth-order term vanishes. Theorem 2 then guarantees that this vector field corresponds to Hamilton’s
equations of a shadow Hamiltonian, which can be computed by integration. Throughout the proof, we will adopt
the convention of summation over repeated indices.

Letting (θ(t), p(t)) be the analytic solution to (3) with initial values (θ0, p0) and supposing that (q(t), θ̂(t), p̂(t)) is
a solution to the implicitly defined equations

q(t) = p0 − t
2∇θH

(
θ0, q(t)

)
,

θ̂(t) = θ0 + t
2

(
∇pH

(
θ0, q(t)

)
+∇pH

(
θ̂(t), q(t)

))
,

p̂(t) = q(t)− t
2∇θH

(
θ̂(t), q(t)

)
,

(20)
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observe that (20) evaluated at t = h retrieves (11). Differentiating each coordinate of (20) with respect to t,

q′i(t) = −1

2

∂

∂θi
H
(
θ0, q(t)

)
+O(t)

θ̂′i(t) =
1

2

(
∂

∂pi
H
(
θ0, q(t)

)
+

∂

∂pi
H
(
θ̂(t), q(t)

))
+O(t)

p̂′i(t) = q′i(t)−
1

2

∂

∂θi
H
(
θ̂(t), q(t)

)
+O(t),

which, evaluated at t = 0, becomes

q′i(0) = −1

2

∂

∂θi
H
(
θ0, p0

)
, θ̂′i(0) =

∂

∂pi
H
(
θ0, p0

)
, p̂′i(0) = − ∂

∂θi
H
(
θ0, p0

)
.

Similarly, differentiating a second time,

q′′i (t) = − ∂2

∂pj∂θi
H
(
θ0, q(t)

)
q′j(t) +O(t)

θ̂′′(t) =
∂2

∂pj∂pi

(
H
(
θ0, q(t)

)
+H

(
θ̂(t), q(t)

))
q′j(t) +

∂2

∂θj∂pi
H
(
θ̂(t), q(t)

)
θ̂′j(t) +O(t)

p̂′′i (t) = q′′i (t)− ∂2

∂pj∂θi
H
(
θ̂(t), q(t)

)
q′j(t)−

∂2

∂θj∂θi
H
(
θ̂(t), q(t)

)
θ̂′j(t) +O(t),

which evaluated at t = 0 is just

q′′i (0) =
1

2

∂2

∂pj∂θi
H
(
θ0, p0

) ∂

∂θj
H
(
θ0, p0

)
θ̂′′i (0) = − ∂2

∂pj∂pi
H
(
θ0, p0

) ∂

∂θj
H
(
θ0, p0

)
+

∂2

∂θj∂pi
H
(
θ0, p0

) ∂

∂pj
H
(
θ0, p0

)
p̂′′i (0) =

∂2

∂pj∂θi
H
(
θ0, p0

) ∂

∂θj
H
(
θ0, p0

)
− ∂2

∂θj∂θi
H
(
θ0, p0

) ∂

∂pj
H
(
θ0, p0

)
.

Moving on to the third order terms,

q′′′i (t) = −3

2

∂2

∂pj∂θi
H
(
θ0, q(t)

)
q′′j (t)− 3

2

∂3

∂pk∂pj∂θi
H
(
θ0, q(t)

)
q′j(t)q

′
k(t) +O(t)

θ̂′′′i (t) =
3

2

∂2

∂pj∂pi

(
H
(
θ0, q(t)

)
+H

(
θ̂(t), q(t)

))
q′′j (t) +

3

2

∂2

∂θj∂pi
H
(
θ̂(t), q(t)

)
θ̂′′j (t)

+
3

2

∂3

∂pk∂θj∂pi
H
(
θ̂(t), q(t)

)
θ̂′j(t)q

′
k(t) +

3

2

∂3

∂θk∂θj∂pi
H
(
θ̂(t), q(t)

)
θ̂′j(t)θ̂

′
k(t)

+
3

2

∂3

∂θk∂pj∂pi
H
(
θ̂(t), q(t)

)
q′j(t)θ̂

′
k(t) +

3

2

∂3

∂pk∂pj∂pi
H
(
θ0, q(t)

)
q′j(t)q

′
k(t)

+
3

2

∂3

∂pk∂pj∂pi
H
(
θ̂(t), q(t)

)
q′j(t)q

′
k(t) +O(t)

p̂′′′i (t) = q′′′i (t)− 3

2

∂2

∂θj∂θi
H
(
θ0, q(t)

)
θ̂′′j (t)− 3

2

∂2

∂pj∂θi
H
(
θ0, q(t)

)
q′′j (t)

− 3

2

∂3

∂θk∂θj∂θi
H
(
θ0, q(t)

)
θ̂′j(t)θ̂

′
k(t)− 3

2

∂3

∂pk∂θj∂θi
H
(
θ0, q(t)

)
θ̂′j(t)q

′
k(t)

− 3

2

∂3

∂θk∂pj∂θi
H
(
θ0, q(t)

)
q′j(t)θ̂

′
k(t)− 3

2

∂3

∂pk∂pj∂θi
H
(
θ0, q(t)

)
q′j(t)q

′
k(t) +O(t).

which implies

q′′′i (0) = −3

4

∂2H

∂pj∂θi

∂2H

∂pk∂θj

∂H

∂θk
(θ0, p0)− 3

8

∂3H

∂pk∂pj∂θi

∂H

∂θj

∂H

∂θk
(θ0, p0)
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θ̂′′′i (0) = −3

2

∂2H

∂θj∂pi

∂2H

∂pk∂pj

∂H

∂θk
(θ0, p0) +

3

2

∂2H

∂θj∂pi

∂2H

∂θk∂pj

∂H

∂pk
(θ0, p0) +

3

2

∂2H

∂pj∂pi

∂2H

∂pk∂θj

∂H

∂θk
(θ0, p0)

− 3

4

∂3H

∂pk∂θj∂pi

∂H

∂pj

∂H

∂θk
(θ0, p0) +

3

2

∂3H

∂θk∂θj∂pi

∂H

∂pj

∂H

∂pk
(θ0, p0)− 3

4

∂3H

∂θk∂pj∂pi

∂H

∂θj

∂H

∂pk
(θ0, p0)

+
3

4

∂3H

∂pk∂pj∂pi

∂H

∂θj

∂H

∂θk
(θ0, p0)

p̂′′′i (0) = −3

2

∂2H

∂pj∂θi

∂2H

∂pk∂θj

∂H

∂θk
(θ0, p0) +

3

2

∂2H

∂θj∂θi

∂2H

∂pk∂pj

∂H

∂θk
(θ0, p0)− 3

2

∂2H

∂θj∂θi

∂2H

∂θk∂pj

∂H

∂pk
(θ0, p0)

− 3

2

∂3H

∂θk∂θj∂θi

∂H

∂pj

∂H

∂pk
(θ0, p0) +

3

2

∂3H

∂pk∂θj∂θi

∂H

∂pj

∂H

∂θk
(θ0, p0)− 3

4

∂3H

∂pk∂pj∂θi

∂H

∂θj

∂H

∂θk
(θ0, p0)

On the other hand, differentiating (3),

θ′′(t) =
∂2

∂pj∂pi
H
(
θ(t), p(t)

)
p′j(t) +

∂2

∂θj∂pi
H
(
θ(t), p(t)

)
θ′j(t)

= − ∂2

∂pj∂pi
H
(
θ(t), p(t)

) ∂

∂θj
H
(
θ(t), p(t)

)
+

∂2

∂θj∂pi
H
(
θ(t), p(t)

) ∂

∂pj
H
(
θ(t), p(t)

)

p′′i (t) = − ∂2

∂pj∂θi
H
(
θ(t), p(t)

)
p′j(t)−

∂2

∂θj∂θi
H
(
θ(t), p(t)

)
θ′j(t)

=
∂2

∂pj∂θi
H
(
θ(t), p(t)

) ∂

∂θj
H
(
θ(t), p(t)

)
− ∂2

∂θj∂θi
H
(
θ(t), p(t)

) ∂

∂pj
H
(
θ(t), p(t)

)
and

θ′′′i (t) = − ∂2H

∂θj∂pi

∂2H

∂pk∂pj

∂H

∂θk

(
θ(t), p(t)

)
+

∂2H

∂θj∂pi

∂2H

∂θk∂pj

∂H

∂pk

(
θ(t), p(t)

)
+

∂2H

∂pj∂pi

∂2H

∂pk∂θj

∂H

∂θk

(
θ(t), p(t)

)
− ∂2H

∂pj∂pi

∂2H

∂θk∂θj

∂H

∂pk

(
θ(t), p(t)

)
− 2

∂3H

∂pk∂θj∂pi

∂H

∂pj

∂H

∂θk

(
θ(t), p(t)

)
+

∂3H

∂θk∂θj∂pi

∂H

∂pj

∂H

∂pk

(
θ(t), p(t)

)
+

∂3H

∂pk∂pj∂pi

∂H

∂θj

∂H

∂θk

(
θ(t), p(t)

)
p′′′i (t) = − ∂2H

∂pj∂θi

∂2H

∂pk∂θj

∂H

∂θk

(
θ(t), p(t)

)
+

∂2H

∂θj∂θi

∂2H

∂pk∂pj

∂H

∂θk

(
θ(t), p(t)

)
− ∂2H

∂θj∂θi

∂2H

∂θk∂pj

∂H

∂pk

(
θ(t), p(t)

)
+

∂2H

∂pj∂θi

∂2H

∂θk∂θj

∂H

∂pk

(
θ(t), p(t)

)
− ∂3H

∂θk∂θj∂θi

∂H

∂pj

∂H

∂pk

(
θ(t), p(t)

)
+ 2

∂3H

∂pk∂θj∂θi

∂H

∂pj

∂H

∂θk

(
θ(t), p(t)

)
− ∂3H

∂pk∂pj∂θi

∂H

∂θj

∂H

∂θk

(
θ(t), p(t)

)
.

Invoking Taylor’s theorem, as t ↓ 0,

θ(t) = θ0 + tθ′(0) +
t2

2
θ′′(0) +

t3

6
θ′′′(0) +O(t4), p(t) = p0 + tp′(0) +

t2

2
p′′(0) +

t3

6
p′′′(0) +O(t4),

θ̂(t) = θ0 + tθ̂′(0) +
t2

2
θ̂′′(0) +

t3

6
θ̂′′′(0) +O(t4), p̂(t) = p0 + tp̂′(t) +

t2

2
p̂′′(0) +

t3

6
p̂′′′(0) +O(t4).

Collecting terms, we see that(
θ̂i(t)− θi(t)

)
=
t3

6

(
− 1

2

∂2H

∂θj∂pi

∂2H

∂pk∂pj

∂H

∂θk
+

1

2

∂2H

∂θj∂pi

∂2H

∂θk∂pj

∂H

∂pk
+

1

2

∂2H

∂pj∂pi

∂2H

∂pk∂θj

∂H

∂θk

+
1

4

∂3H

∂pk∂θj∂pi

∂H

∂pj

∂H

∂θk
+

1

2

∂3H

∂θk∂θj∂pi

∂H

∂pj

∂H

∂pk
+

1

4

∂3H

∂θk∂pj∂pi

∂H

∂θj

∂H

∂pk

− 1

4

∂3H

∂pk∂pj∂pi

∂H

∂θj

∂H

∂θk
+

∂2H

∂pj∂pi

∂2H

∂θk∂θj

∂H

∂pk

)
+O(t4),
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which can be written(
θ̂i(t)− θi(t)

)
=

∂

∂pi

t3

6

(1

2

∂2H

∂θk∂θj

∂H

∂pj

∂H

∂pk
− 1

4

∂2H

∂pk∂pj

∂H

∂θj

∂H

∂θk
+

1

2

∂2H

∂θk∂pj

∂H

∂θj

∂H

∂pk

)
+O(t4)

=
∂

∂pi

t3

6

(1

2
∇pH∇θθH∇pH −

1

4
∇θH∇ppH∇θH +

1

2
∇θH∇θpH∇pH

)
+O(t4).

Analogous calculations give us

(
p̂i(t)− pi(t)

)
= − ∂

∂θi

t3

6

(1

2

∂2H

∂θk∂θj

∂H

∂pj

∂H

∂pk
− 1

4

∂2H

∂pk∂pj

∂H

∂θj

∂H

∂θk
+

1

2

∂2H

∂θk∂pj

∂H

∂θj

∂H

∂pk

)
+O(t4)

= − ∂

∂θi

t3

6

(1

2
∇pH∇θθH∇pH −

1

4
∇θH∇ppH∇θH +

1

2
∇θH∇θpH∇pH

)
+O(t4).

Taken together,

(
ẑ(t)− z(t)

)
= J∇ t

3

6

(1

2
∇pH∇θθH∇pH −

1

4
∇θH∇ppH∇θH +

1

2
∇θH∇θpH∇pH

)
+O(t4).

Fixing t = h, and keeping in mind that the generalized leapfrog integrator is reversible, Theorems 1.2 and 2.2
from Chapter IX in Hairer et al. (2006) imply that

ẑ′(t) = z′(t) +
(
ẑ′(t)− z′(t)

)
= J∇H + J∇h

2

6

(1

2
∇pH∇θθH∇pH −

1

4
∇θH∇ppH∇θH +

1

2
∇θH∇θpH∇pH

)
+O(h4)

= J∇H[4] +O(h4),

as required.

Proof of Theorem 2. Assume M is a smooth, simply connected Riemannian manifold with metric g, and that
φtH is a symplectic integrator on T ∗M , smooth in its step size t. Denote by X the corresponding (and typically
time-inhomogeneous) symplectic vector field on T ∗M . Note that this vector field can be locally computed by
asymptotic expansion after differentiating φtH in t. Since X is symplectic, it corresponds to a closed differential
1-form via the canonical isomorphism induced by the symplectic form.

In order to show existence of a shadow Hamiltonian, we will now demonstrate that this closed form must be
exact. To do so, we first argue that the first de Rham cohomology group on the vector bundle T ∗M must be
trivial (see Barp et al. (2018) for a statistical introduction). For (θ, p) ∈ T ∗M define a deformation retraction
onto the zero section of T ∗M via (θ, p) 7→ (θ, (1− t)p) for t ∈ [0, 1]. The homotopy invariance of the de Rham
cohomology now guarantees that H1

dR(T ∗M) ' H1
dR(M).

Next, invoke de Rham’s Theorem (5.36 in Warner (1983)), which tells us that the first de Rham cohomology group
is isomorphic to the first singular cohomology group with real coefficients (see Warner (1983) or Hatcher (2000)).
That is, H1

dR(M) ' H1(M,R). From here, the universal coefficient theorem for cohomology (see Theorem 3.2 in
Hatcher (2000)) suggests that H1(M,R) ' Hom

(
H1(M)

)
, where H1(M) is the first homology group of M . The

Hurewicz theorem (see Theorem 4.1 in Whitehead (1978)) now implies that the Hurewicz map ρ : π1(M)→ H1(M)
is a homomorphism, where π1(M) is the first fundamental group of M . Moreover this homomorphism is an
isomorphism whenever π1(M) is abelian.

Keeping in mind that M is simply connected and so has trivial first fundamental group, we can conclude that the
first de Rham cohomology group of T ∗M is also trivial. This can be seen in the chain of isomorphisms

H1
dR(T ∗M) ' H1

dR(M) ' H1(M,R) ' Hom
(
H1(M)

)
' Hom

(
π1(M)

)
' 0.

This shows that the symplectic vector field X is not only closed, but exact. That is, it is a Hamiltonian vector
field corresponding to some Hamiltonian Hφ.

Now since the symplectic integrator is reversible, its maximal error must be of even order, say n, for some n ∈ 2N
(see Chapter V of Hairer et al. (2006)). Symplecticity guarantees the Hamiltonian H is preserved up to this order.
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By taking the n+ 1-th order Taylor approximation of X, in the same vein as Theorem 1, one can integrate this
vector field approximation to compute the (n+ 2)-th order shadow Hamiltonian, Hn+2.

Assume now that we have such a shadow Hamiltonian of order k, for some even integer k > n+ 2. That is, the
symplectic integrator ϕtH ’s approximation of the Hamiltonian trajectories corresponding to H, conserves the
shadow Hamiltonian H2k and tracks its Hamiltonian trajectories up to order 2k. We know that the integrator
φtH is reversible, so its error must be even. By computing the 2k + 1-th order Taylor approximation of X, we can
integrate to find H2k+1. The inductive hypothesis implies the theorem.

C Additional Numerical Experiments

C.1 Momentum Refreshment

To investigate the effects of varying the momentum refreshment parameter ρ, we ran ten independent chains of
RMHMC and SMHMC on the 30-dimensional funnel for each ρ ∈ {0.0, 0.1, . . . , 0.8}. Each chain is comprised of
1000 samples with 100 burn-in steps, but otherwise used the same parameters as those in Section 4.3. The results
are displayed in Figure 4. RMHMC shows a general trend towards improved acceptance and performance as
ρ increases. The same trend is shared by SMHMC, but to a lesser extent, possibly due to its universally high
acceptance probabilities.

Figure 4: (a) Acceptance probabilities; (b) minESS; and (c) minESS/s for 10 chains of RMHMC and SMHMC on
the 30-dimensional funnel with varying choices of ρ.
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C.2 Varying Tail Behaviour

In a similar vein, we also investigate the effects of the tail parameter c in (15). We ran ten independent chains
of SMHMC on the Bayesian logistic regression problem with the German dataset. Each chain is comprised of
1000 samples with 100 burn-in steps — otherwise, we use the same parameters seen in Section 4.2. The results
are displayed in Figure 5. We recall that increasing c interpolates between RMHMC and SMHMC, and this can
be readily seen in the rising acceptance probabilities. Such monotonicity is not shared by the minESS. Indeed,
worst-case performance appears when c = −0.5, when roughly half of the modified Hamiltonians H(θ, p) coincide
with the classical Hamiltonians H(θ, p).

Figure 5: (a) Acceptance probabilities; (b) minESS; and (c) minESS/s for 10 chains of SMHMC on the German
dataset with varying choices of c.
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