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Abstract. The spread of the human immunodeficiency virus (HIV) depends promi-
nently on the migration of people between different regions. An important consequence
of this population mobility is that HIV control strategies that are optimal in a regional
sense may not be optimal in a national sense. We formulate various mathematical con-
trol problems for HIV spread in mobile heterosexual populations, and show how optimal
regional control strategies can be obtained that minimize the national spread of HIV.
We apply the cross-entropy method to solve these highly multi-modal and non-linear
optimization problems. We demonstrate the effectiveness of the method via a range of
experiments and illustrate how the form of the optimal control function depends on the
mathematical model used for the HIV spread.
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1 Introduction

The control of infectious diseases such as Acquired Immune Deficiency Syndrome (AIDS),
which is caused by HIV, is a challenging public health problem. As the awareness of AIDS
increases and the urgency to control it becomes crucial to many nations, more and more
local and national governments provide funding to combat the disease. In Indonesia, for
example, where a high population mobility among its regions seems to lead to a high
risk for the spread of the epidemic [12, 31], many local governments have planned and
allocated funds and resources to control the spread of HIV in their regions. However,
as the people travel among regions, it is not clear whether an allocation of funds that
is optimal for local regions is also optimal for the nation as a whole. The main goal on
a country level is to find regional control strategies that minimize the total number of
new infectives in the country as a whole, without using more than the allocated budget
in each individual region.

In this paper we formulate various mathematical control models for HIV spread,
which incorporate complex characteristics such as hetero-sexual transmission and mi-
gration among regions. These control models turn out to be highly non-linear and are
difficult to solve via standard (convex) optimization procedures. Instead, we solve these
problems via the cross-entropy (CE) method [24]; to our knowledge this is the first appli-
cation of the CE method to optimal control. Numerical results demonstrate the efficiency
and accuracy of the approach and illustrate how the optimal control functions depend
on the models and their parameters.

The literature on optimal control for the spread of HIV is not extensive. One of the
reasons is that the mathematical models used to describe the dynamics of HIV spread
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tend to be quite complex. For example, the incubation period after infection with HIV
is known to be extremely long; the disease can be transmitted in many different ways
— via sexual contact, blood transfusions, birthing, and infected syringes — , and the
migration of people among subgroups has significant consequences for the dynamics of the
epidemic spread [21, 26]. As a consequence, mathematical models involving complex HIV
transmission mechanisms usually do not lend themselves to conventional mathematical
control techniques such as dynamic programming and convex optimization.

Most studies on epidemic control for HIV therefore focus on influencing the control
parameters in the model, e.g., investigating how changing certain control parameters
affects the evolution of the number of infected individuals over a certain period of time.
The main purpose then is to identify the parameters that have the most significant
effect on reducing the number of (new) infectives. For example, in Bernstein [1] three
intervention strategies for preventing heterosexual transmission of HIV are considered:
(1) reduce the number and rate of change of sex partners, (2) increase condom use,
and (3) improve the treatment of sexually transmitted diseases. Both deterministic and
stochastic models are considered to simulate the evolution of the AIDS epidemic. The
demographic, biological, and behavioral parameters for a severely affected east African
city early in the epidemic are estimated and these parameter values are used to compute
the spread of HIV under the above intervention strategies. Similar intervention strategies
are studied in Hyman [13], for the spread of HIV, and in Kretzschmar et al. [16], for the
spread of gonorrhea and chlamydia.

The approach that we take in this paper is to formulate the HIV intervention problem
as a mathematical optimal control problem, that is, finding control functions that opti-
mize some objective function. A review of applications of mathematical control theory
to some simple disease models (up to 1976) can be found in Wickwire [30]. For a more
recent application see, for example, Clancy and Piunovsky [6], who consider an optimal
isolation policy for a deterministic epidemic model by minimizing the cost of isolating
infectives from the susceptible population. A similar study is by Greenhalgh [11], who
considers an epidemic spreading through a homogeneously mixing population. The con-
trol consists here of immunizing susceptible people and isolating and removing infected
people from the rest of the population. In Jung et al. [14] a two-strain tuberculosis model
is described via a system of ordinary differential equations and two types of treatments
are applied as controls, in order to reduce the latent and infectious groups. Standard
techniques in optimal control, Hamiltonian and Pontryagin’s Maximum Principles, are
applied to derive the optimal solution and the problem is solved numerically for several
scenarios. In Kirschner et al. [15] the objective is to minimize the systematic cost of
chemotherapy in early HIV treatment. The interaction of the immune system with HIV
is described by an ODE model. The control is the percentage effect of chemotherapy on
the viral production. The control problem consists here of distributing a limited number
of resources over a fixed time horizon, which is a recurring theme in many epidemic
intervention studies; see, for example, [3, 5, 23].

The mathematical control problems in the present paper are mostly motivated by
the following studies. In Blount et al. [3] an optimal control problem is considered for
a discrete-time, deterministic SIS epidemic over a finite time horizon 1, 2, . . . , T . The
objective is to minimize the total cost of the epidemic over the finite time horizon, which
accounts for the cost of the new infections produced and the cost of controlling the current
infected population. The control consists of a sequence u1, . . . , uT of binary values, where
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ut = 1 means that a “control” is applied during the t-th time period and ut = 0 means
that no control is applied. Two alternative methods, nonlinear programming (NLP) and
dynamic programming (DP), are applied to find a best control sequence. It is shown that
DP gives qualitatively much better results and is computationally cheaper than NLP.
However, the degree of complexity increases exponentially in T , and both approaches
are infeasible when either or both the epidemic model and the control function are
formulated as (non-linear) continuous-time functions. Such problems have been studied
in, for example, [3, 5, 23]. In [5, 23], it is shown that it is not generally possible to derive
the optimal solution of such complex problem in a closed form and therefore one needs
resort to approximation techniques.

Several epidemic models for the spread of HIV in a mobile population were introduced
in [25]. There, the infection rates were considered to be fixed for all times. In this paper,
we assume that the infection rates for all patches can vary; see also [29]. More specifically,
we assume that they are a function of some epidemic control strategy. We consider a
continuous-time epidemic problem with continuous-time control functions in multiple
populations. The problem is to minimize the number of new infectives over a finite time
horizon. The optimal control function is derived via the CE method, as an alternative
to NLP and DP [2, 27].

The remainder of this paper is organized as follows. Section 2 describes various models
for the evolution of susceptibles and HIV infectives in multiple mobile populations, and
formulates the corresponding optimal control problem. Section 3 provides the main CE
procedure for solving these highly non-linear control problems. This is clarified with
an illustrating example. In Section 4 we present various numerical experiments for the
HIV optimal control problem and discuss their outcomes, which are sometimes counter-
intuitive. Concluding remarks and directions for future research are given in Section 5.

2 The Models

In this section, we first briefly review various epidemic models for the spread of HIV
in mobile heterosexual populations [25], and then formulate the corresponding epidemic
control problems, which are the focus of this paper.

2.1 The Epidemic Models

The following models describe the spread of HIV infectives in multiple, sexually active
populations, where individuals are allowed to migrate among populations. The mode of
transmission is assumed to be via sexual contact only between partners of the opposite
sex. This assumption is mainly because heterosexual contact is still the primary mode
of HIV infection worldwide. However, one can easily extend the models by including,
for example, man-to-man sexual contact or other modes of transmission. Individuals in
each population are divided into four groups (compartments): female susceptibles, female
infectives, male susceptibles, and male infectives. New susceptibles enter the population
at rate BF (BM ) for females (males). Susceptible individuals leave their groups due
to either natural death at rate µ, or because they move to the corresponding infectives
group at rate λF (λM ) for females (males). We assume that males are fewer then females
(a similar assumption is adopted in [9]) and males choose a female partner from the
female subpopulation. Therefore, the rates λF and λM are assumed to be proportional
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to the fraction of infected members of opposite sex, relative to the female subpopulation
size. That is,

λF = β
IM(t)

NF (t)

(
λM = β

IF (t)

NF (t)

)
, (1)

where β is the infection rate parameter, IM and IF are the number of male and female
infectives, respectively, and NF = SF + IF is the size of the female subpopulation, with
SF the number of female susceptibles. The rates λF and λM are called the forces of
infection, which are the same as the rates of infection per susceptible, defined in [13]. In
addition to natural deaths, the infected individuals also leave their groups because they
develop AIDS at rate γ. Note that the population in each region does not include the
AIDS subpopulation, since AIDS people are assumed to be no longer sexually active due
to opportunistic diseases. This is summarized in the scheme in Figure 1.

Females

People
AIDS

Males
InfectedSusceptible

Males

Susceptible Infected
Females

γ

µ µ

γ

µµ

λF

λM

BF

BM

Figure 1: The scheme of the model. Susceptible females (males) are infected by infected
males (females) via sexual contact only, indicated by the dashed lines.

Individuals in one population can move to the other populations, where they can
spread the disease or be infected by it. Suppose R is the total number of populations,
which we will henceforth refer to as patches. Let Ri denote patch i and let v(i) stand for
the emigration rate from Ri. Suppose, moreover, that an individual leaving Ri migrates
to Rj with probability ρij . Then, υij = ρij v(i) denotes the migration rate of individuals
from Ri to Rj . The mobility of individuals among the patches is illustrated in Figure 2.
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Figure 2: The scheme for the mobility of people among patches. The size of a circle
corresponds to the total population size in that patch.

We formulate three different models to describe the dynamics of the system. In the
first two models we assume that the individuals do not make an actual move among
patches but that there is a force of infection from infected patches to others. We call
this inter-patch infection. As in [9] and [20], the force of infection is defined as the rate
at which a susceptible female (male) in one patch will be infected by an infected male
(female) within that patch and from other patches; see (1). When many infectives are
present in a patch, the force of infection from this patch to other patches becomes large.
We derive two models for this case: one with a constant population size and one with a
varying population size. The third model allows individuals to move from one patch to
others. Thus, a susceptible female (male) in a patch will be infected by an infected male
(female) within that patch only. We consider this case under a varying population size
only.

For the case of a constant population size, all individuals that leave the system are
replaced (balanced) by an inflow of susceptibles, at a proportion ξ for females and 1− ξ

for males. Let B
(r)
F and B

(r)
M denote the rate at which new susceptible females and

males in patch r enter their corresponding compartments, respectively. Then, B
(r)
F =

ξ (µ N (r) + γ I(r)) and B
(r)
M = (1 − ξ) (µ N (r) + γ I(r)), where N (r) = N

(r)
F + N

(r)
M is the

population size of patch r, with N
(r)
F (N

(r)
M ) the size of female (male) subpopulation, and

I(r) = I
(r)
F + I

(r)
M . Note that γ I(r) represents the rate at which AIDS cases develop. The

population sizes N (r), r = 1, . . . , R need not be the same. Let s
(r)
F (t), i

(r)
F (t), s

(r)
M (t), i

(r)
M (t)

denote the proportion of susceptible females, infected females, susceptible males, and
infected males in patch r at time t, respectively, relative to the total population of all

patches N =
∑R

r=1 N (r). Thus, for example, s
(r)
F (t) =

S
(r)
F

(t)
N

. The scaled inflow rates for
susceptible females and males in each patch are given by

b
(r)
F =

B
(r)
F

N
= ξ (µ n(r) + γ i(r)) and b

(r)
M =

B
(r)
M

N
= (1 − ξ) (µ n(r) + γ i(r)), (2)

respectively, where n(r) = N(r)

N
and i(r) =

I(r)

N
= i

(r)
F + i

(r)
M .

For the case of a varying population size, we assume for simplicity that B
(r)
F = B

(r)
M =
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B, at a constant rate B, for all patches. In this case the variables s
(r)
F (t), i

(r)
F (t), s

(r)
M (t), i

(r)
M (t)

denote the proportion of susceptible and infected females, susceptible and infected males
in patch r, at time t, relative to a scaling parameter V = 2RB

µ
, corresponding to the

equilibrium population size in the absence of disease. Hence, the scaled inflow rates are
the same for susceptible females and males in each patch:

b
(r)
F = b

(r)
M =

µ

2R
, (3)

where b
(r)
F =

B
(r)
F

V
and b

(r)
M =

B
(r)
M

V
. If the flow rates are not the same for each patch, say

B
(r)
F = B

(r)
M = B(r) with a constant rate B(r) for patch r, one can take, for example,

V = 2Btot

µ
with Btot =

∑R
j=1 B(r) as a scaling parameter. The inflow rates for both

susceptible females and males then become bF = bM = µ B(r)

2 Btot
.

Models with Inter-Patch Infection

As mentioned above, we consider two scenarios for this case: the scenario where the
size for each population remains constant over time and the case where the population
size is varying. The difference concerns the rates at which female (male) susceptibles
enter the system. The evolution of susceptibles and infectives among patches for both
cases is governed by the following system of differential equations [25]:

ds
(r)
F

dt
= b

(r)
F −

R∑

j=1

β(jr) i
(j)
M

n
(j)
F

s
(r)
F − µ s

(r)
F ,

di
(r)
F

dt
=

R∑

j=1

β(jr) i
(j)
M

n
(j)
F

s
(r)
F − (µ + γ) i

(r)
F , (4)

ds
(r)
M

dt
= b

(r)
M −

R∑

j=1

β(jr) i
(j)
F

n
(j)
F

s
(r)
M − µ s

(r)
M ,

di
(r)
M

dt
=

R∑

j=1

β(jr) i
(j)
F

n
(j)
F

s
(r)
M − (µ + γ) i

(r)
M ,

where n
(r)
F =

N
(r)
F

N
, n

(r)
M =

n
(r)
F

N
, b

(r)
F and b

(r)
M are defined in (2) for the case of constant

population size and (3) for varying population size. The force of infection in each patch

r is described by the term
∑R

j=1 β(jr) i
(j)
M

n
(j)
F

for susceptible females and
∑R

j=1 β(jr) i
(j)
F

n
(j)
F

for

susceptible males, with β(jr) the infection rate parameter from patch j to patch r. Note
that the total number of AIDS cases in patch r over a time period [0, t] can be calculated
as

∫ t

0 γ i(r)(u) du.

Model with Actual Mobility

We consider only the case of varying population size for this model. The formulation
of the rate at which a susceptible is infected by an infective in this model is slightly
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different from the two previous models with inter-patch infection. In addition, there are
two extra terms for each subpopulation, describing the migration rates of individuals

among corresponding subpopulations in the patches. Let n(r) = n
(r)
F + n

(r)
M and v(r)

denote the population size and the migration rate of patch r, respectively, relative to
a scaling parameter V = 2RB

µ
. The evolution of the state variables in this model is

described by the following system of ODEs:

ds
(r)
F

dt
= b

(r)
F − β(r) i

(r)
M

n
(r)
F

s
(r)
F − µ s

(r)
F +

R∑

j=1

vjr

n(j)
s
(j)
F −

v(r)

n(r)
s
(r)
F ,

di
(r)
F

dt
= β(r) i

(r)
M

n
(r)
F

s
(r)
F − (µ + γ) i

(r)
F +

R∑

j=1

vjr

n(j)
i
(j)
F −

v(r)

n(r)
i
(r)
F , (5)

ds
(r)
M

dt
= b

(r)
M − β(r) i

(r)
F

n
(r)
F

s
(r)
M − µ s

(r)
M +

R∑

j=1

vjr

n(j)
s
(j)
M −

v(r)

n(r)
s
(r)
M ,

di
(r)
M

dt
= β(r) i

(r)
F

n
(r)
F

s
(r)
M − (µ + γ) i

(r)
M +

R∑

j=1

vjr

n(j)
i
(j)
M −

v(r)

n(r)
i
(r)
M ,

where β(r) ≡ β(rr) is the parameter of infection rate within patch r and vjr = ρjr v(j),

with ρjr the probability to visit patch r from patch j. The rates b
(r)
F and b

(r)
M are defined

in (3). We put vrr = 0 for all r. Note that all variables (such as s
(r)
F and i

(r)
F ) are relative

to the parameter V . The dynamic behavior of these models is discussed in [25]. Again,
the number of AIDS cases at time t in patch r can be calculated by taking the integral
of γ i(r).

2.2 Epidemic Optimal Control Formulation

The epidemic control problem is formulated as follows. Suppose each patch r has a fixed
budget, say K(r), for r = 1, . . . , R, which needs to be spent over a finite time horizon
[0, T ]. Let u(r) = u(r)(t) denote the control function, which is to be interpreted as the
amount of budget spent per unit time in patch r. Suppose the parameter of infection
rate in patch r, denoted β(r) = β(u(r)), is a decreasing function with respect to the
control function u(r). Note that β(jr) = β(u(j)). The function β(r) can be, for example,
of following form:

β1 = β(u) = βmax − c1 u, (6)

or

β2 = β(u) =
βmax

1 + c2 u
, (7)

for some nonnegative constants c1, c2 ∈ R with c1 ≤ βmax

umax
, where umax is the largest

admissible control value. The function β2 implies that a relatively small amount of
control effort results in a large reduction in the infection rate, but a greater amount of
budget is required to reduce the infection rate to its minimum value (i.e., it is costly to
completely eliminate an epidemic in the entire population). In this study, we use the
form β2 which is frequently used in epidemic control; see, for example, [4].

The problem we are interested in is to determine the shape of the control function
u(r) for each patch r, such that the total number of new infectives in all of the patches
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over the time horizon is minimized. Let u = {u(r), r = 1, . . . , R}. Then, our epidemic
intervention problems are formulated as follows.

For the models with inter-patch infection

min
u

J(u) = min
u

∫ T

0

R∑

r=1

R∑

j=1

β(jr)
[ i

(j)
M

n
(j)
F

s
(r)
F +

i
(j)
F

n
(j)
F

s
(r)
M

]
dt, (8)

subject to the dynamic constraint (4) and the integral constraints
∫ T

0
u(r) dt = K(r), u(r) ≥ 0, r = 1, . . . , R. (9)

For the model with actual mobility

min
u

J(u) = min
u

∫ T

0

R∑

r=1

β(r)
[ i

(r)
M

n
(r)
F

s
(r)
F +

i
(r)
F

n
(r)
F

s
(r)
M

]
dt (10)

subject to the dynamic constraint (5) and the integral constraints (9).

The terms inside the integral in the objective functions describe the rate at which new
infectives are generated. For the case of a constant population size, J(u) is the proportion
of new infective cases relative to the total population size N in the R patches. For the
case of the varying population size, J(u) is the proportion of new infective cases relative
to the scaling parameter V = 2RB

µ
.

A well-known approach to solving optimal control problems is to first define the
Lagrangian of the original, or primal, problem and then consider the adjoint, or dual,
problem. This leads in general to a system of coupled differential equations, which
sometimes, for simple problems, can be solved explicitly [22]. However, because the
constraints in the present problem are highly non-linear and the number of variables is
quite high, the above primal-dual approach is difficult to solve analytically [28]. Instead,
one could attempt to solve the resulting multipoint boundary-value problem numerically,
for example via indirect methods such as multiple shooting [10, 28].

Other well-known numerical techniques to solve such optimal control problems are
NLP and DP. We introduce a simple alternative method by employing a Cross-Entropy
(CE) technique to solve the problem numerically.

3 Solving Control Problems via CE

In this section we introduce a CE procedure for solving difficult non-linear control prob-
lems of the type discussed in the previous section. This is the first reported application
of CE to such problems. At the end of this section, we illustrate the approach via a
clarifying example.

3.1 CE Method for Optimal Control

The cross-entropy (CE) method [24] is a recent Monte Carlo method that has proven
to be very successful in solving a wide range of difficult optimization and estimation
problems. A gentle tutorial can be found in [8]. The Cross-Entropy (CE) method is an
iterative method that involves the following two phases:
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1. Generation of a random sample of data (trajectories, vectors, etc.) according to a
specified random mechanism.

2. Updating the parameters of the random mechanism, on the basis of the data, in
order to produce a “better” sample in the next iteration. This involves a cross-
entropy minimization procedure.

Main Procedure

Suppose, we wish to minimize some objective, or performance, function J(u), over a set U
of continuous functions u = {u(r)(t), r = 1, . . . , R, t ∈ [0, T ]}, for some finite time T . We
can think of U as a subset of functions in CR[0, T ] (the set of continuous functions from
[0, T ] to R

R) that satisfy certain integral and/or dynamic constraints, such as discussed
in the previous section. Let us denote the minimum by γ∗, assuming it exists. Thus,

γ∗ = J(u∗) = min
u∈U

J(u). (11)

Instead of solving this functional optimization program directly, we consider a related
parametric optimization program, namely

min
c∈C

J(uc),

where uc is a function in U that is parameterized by some control vector c ∈ R
m for some

m, and C ⊂ R
m is the collection of such control vectors. Clearly, if the collection {uc, c ∈

C} is chosen large enough, the solution to the parametric problem should approximate
that of the original problem. In particular, let c∗ be the optimal control vector and γc∗

the corresponding optimal value, that is,

γc∗ = J(uc∗) = min
c∈C

J(uc), (12)

then γ∗ ≈ γc∗ and u∗ ≈ uc∗ , if the set of parametric control functions can approximate
U well enough. The theoretical convergence properties of the CE method still form an
area of active research. Various results proving convergence to the optimal solution can
be found in [24], [19] and [7].

A simple way to parameterize the problem is to partition the interval [0, T ] into n

subintervals [t0, t1], . . . , [tn−1, tn], and let c = {c
(r)
i , r = 1, . . . , R; i = 0, . . . , n} be a vector

of control points, and then define each function u
(r)
c via some interpolation of the points

{(ti, c
(r)
i )}. The interpolation could, for example, be based on the finite element method

(FEM) [32], in which case each u
(r)
c is of the form

u
(r)
c (t) =

n∑

i=0

c
(r)
i wi(t), (13)

where

wi(t) =





t−ti−1

ti−ti−1
, for t ∈ [ti−1, ti],

ti+1−t

ti+1−ti
, for t ∈ [ti, ti+1],

0, otherwise.

(14)
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Remark 3.1 Instead of linear FEM, one can use many different types of spline functions,
such as the popular cubic B-Spline, to represent the control functions, or one can apply
the Lagrange interpolating polynomial L(t) of degree ≤ n, which is given by

L(t) =

n∑

j=0

lj(t), where lj(t) = aj

n∏

i=0
i6=j

t − ti
tj − ti

.

For a given control function uc, the performance value J(uc) can be evaluated directly
by solving numerically the ODE system which describes the dynamic (state) constraints,
e.g., via Runge-Kutta (RK) techniques. The CE method is employed to find the optimal

control vector c∗ = {c
(r)∗
i , r = 1, . . . , R; i = 0, . . . , n}. The idea is to generate each

control point c
(r)
i randomly from a Gaussian distribution with mean µ

(r)
i and standard

deviation σ
(r)
i , and to update these parameters via CE to produce better performing

control vectors in the next iteration [17]. We summarize the approach in the following
algorithm.

Main Algorithm

1. Initialize: Choose µ0 = {µ
(r)
0i , r = 1, . . . , R; i = 0, . . . , n } and σ0 = {σ

(r)
0i , r =

1, . . . , R; i = 0, . . . , n}. Set k = 1 (iteration counter).

2. Draw: Generate a random sample C1, . . . ,CM ∼ N(µk−1,σ
2

k−1
) with Cm =

{C
(r)
mi , r = 1, . . . , R; i = 0, 1, . . . , n}. Note that M denotes here the sample size.

3. Evaluate: For each control vector Cm evaluate the objective function J(uCm),
e.g., by solving the ODE system using RK techniques.

4. Select: Find the Me best performing (=elite) samples, based on the values {J(uCm)}.
Let I be the corresponding set of indices.

5. Update: For all r = 1, . . . , R; i = 0, 1, . . . , n, let

µ̃
(r)
ki =

1

Me

∑

m∈I

C
(r)
mi (15)

and

σ̃
(r) 2
ki =

1

Me

∑

m∈I

(
C

(r)
mi − µ

(r)
ki

)2
. (16)

6. Smooth: For a fixed smoothing parameter 0 < α ≤ 1, let

µk = αµ̃k + (1 − α)µk−1, σk = ασ̃k + (1 − α)σk−1 (17)

7. Stop: Repeat 2–6 until maxi,r σ
(r)
ki < ε. Let L be the final iteration number.

Return µL as an estimate of the optimal control parameter c∗.

Note that the algorithm is completely self-tuning, once the initial parameters, the
rarity parameter ρ = Me/M , the smoothing parameter α and the stopping parameter
ε are specified. The algorithm is quite flexible under the choice of parameters. Typical
values for ρ are 0.01 or 0.1; α usually is chosen in the range 0.6–1. The choice for the
initial {µ0i} is quite inconsequential, provided that the {σ0i} are chosen large enough.
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Remark 3.2 If the control problem involves, in addition to dynamic constraints, equal-
ity or inequality constraints on the function u, such as −1 ≤ u(r) ≤ 1 or

∫ T

0 u(r)(t)dt = K,
then, naturally, one would like each random uC to satisfy these constraints as well. For
the first type of constraints this can be established by rejecting samples that do not satisfy
the constraints. For equality constraints such as

∫ T

0 u(r)(t)dt = K such an acceptance-
rejection step is not possible. Instead one can choose one of the control points such
that the equality constraint holds exactly, where the other control points are chosen
adaptively via CE. An alternative approach to deal with constraints on u is to add a
penalty component to the objective function. However, it is often difficult to choose a
good penalty function [17].

Remark 3.3 Note that in the above algorithm the choice of the grid (or mesh) {t0, . . . , tn}
is assumed to be fixed; only the control points vary. One can easily modify the algorithm
to incorporate a grid that gradually refines, in order to obtain a better approximation to
u∗. Starting with a coarse grid initially reduces the simulation effort, and decreasing the
mesh size produces a more smooth control function, especially when using linear FEM.

3.2 Example: Optimal Control for the SI Model

The following optimal control example illustrates how the CE technique works and con-
verges to the approximating control function uc∗ . It also gives some insight into the
numerical results for the more complex models in this paper.

We consider a basic epidemic intervention problem where the evolution of the epi-
demic is described by a simple continuous-time SI (susceptible-infective) model. The
objective is to minimize the number of infectives given a limited budget over a fixed time
period. This problem is not convex and it is not possible to derive a closed-form solution
via the adjoint system (or the standard optimal control theory).

The SI model with a constant population size is defined via the following ODE

i′(t) = β i(t) (1 − i(t)) − µ i(t), i(0) = i0, (18)

where i(t) represents the proportion of infectives in the population and µ denotes the
death rate of infectives from the population. The proportion of susceptibles is given by
s(t) = 1 − i(t). Suppose a fixed amount of budget K is available to control the disease
over a fixed time period [0, T ] and let the control function u(t) denote the rate at which
budget is spent at time t. The infection rate β in (18) is assumed to be a decreasing
function of u of the form (7). The problem is to minimize the new infective cases in the
given period of time:

min
u

J(u) = min
u

∫ T

0
β(u) i(t) (1 − i(t)) dt, (19)

subject to the state constraint (18) and

∫ T

0
u(t)dt = K, u(t) ≥ 0. (20)
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We assume that initially i(0) = 0.1 and we set the other parameters as follows: the
time horizon T = 25 (years), the death rate µ = 0.02, the available budget K = 10, and
the maximum infection rate βmax = 0.5. The infection rate β(u) in (19) is defined as

β(u) =
βmax

1 + u
.

Note that if no control is applied (u = 0), the infection rate takes its maximum value.
When we solve the problem via the CE approach, the approximating control functions
for several simulation runs seem to converge to the solution depicted in Figure 3.
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u(
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J(u) ≈ 1.167

Figure 3: The approximating control function u for the SI control problem, obtained via
the CE technique (five different runs).

Figure 4 illustrates how the shape of the final solution depends on the initial propor-
tion of infectives i(0).

0 5 10 15 20 25
0.32

0.34

0.36

0.38

0.4

0.42

0.44

t (time)

u(
t)

J(u) = 0.8798207

(a) i(0) = 0.001.
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Figure 4: Optimal solutions for three different initial proportions of infectives, i(0).
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4 Numerical Experiments and Discussion

In this section, we apply our CE procedure to solve the epidemic control problems in-
troduced in Section 2.2. For clarity, we refer to these epidemic intervention problems
as:

• Problem I : the case with inter-patch infection and constant population size,

• Problem II : the case with inter-patch infection and varying population size,

• Problem III : the case with actual mobility.

In the numerical experiments we choose the number of patches R = 5 and assume
that the initial numbers of infectives and susceptibles are the same for all patches, except
for patch 1 where the disease is initially concentrated. In particular, the initial values

for the female and male susceptibles are set to S
(r)
F (0) = S

(r)
M (0) = 50,000. The female

and male inflow proportions are assumed to be equal, that is, ξ = 1/2. We assume that
100 male infectives are initially concentrated in patch 1 only, and no infectives in other

patches at time t = 0; i.e., I
(1)
M (0) = 100, I

(1)
F (0) = 0 and I

(r)
F (0) = I

(r)
M (0) = 0 for

r = 2, . . . , 5. The available budgets for the patches are K(1) = 10, K(2) = 5, K(3) =
2, K(4) = 7, K(5) = 10, and the time horizon is fixed at T = 25 years. The infection rate

is of the form β2 in (7), with β
(r)
max = 0.5 within each patch and β

(jr)
max = 0.3 from other

patches for j 6= r = 1, . . . , 5, and c2 = 1 for all patches. Finally, µ = 0.02, v(r) = 10 for
all r, and ρij = 0.25 for i 6= j = 1, . . . , 5.

4.1 Problem I (Inter-Patch Infection, Constant Population Size)

The shapes of the optimal control functions obtained via CE are depicted in Figure 5.
The functions have a “parabolic” shape for all patches (except patch 1 which seems to
be “linearly” decreasing) in the interval [0, 10], and are zero on [10, 23], followed by a
linearly increasing part in [23, 25].
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u(1)
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u(3)

u(4)

u(5)

J(u) = 2.47291260800231

Figure 5: The optimal control functions u(r) of Problem I for patch r = 1, . . . , 5 obtained
via CE.

Although a little funding should be allocated in the last 2 years, the numerical results
via CE suggest that most budget should be concentrated in the first 10 years, but only
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a very small portion of the budget is spent in the first one or two years. This result
seems reasonable since it might not be worth spending much budget in the first one or
two years when no or only a few infectives might be present, except in patch 1.

Comparison with Uniform Strategy

To give some indication of the quality of the CE solution, we compare it with two
simple “uniform” strategies, denoted U1 and U2. Given a fixed ta with 0 < ta < T , the
U1 scenario means that u(r)(t) = K(r)/ta for t ∈ [0, ta] and u(r)(t) = 0 for t ∈ (ta, T ],
and U2 represents u(r)(t) = 0 for t ∈ [0, T − ta] and u(r)(t) = K(r)/ta for t ∈ [T − ta, T ].
We vary the variable ta and solve the corresponding control problem. Figure 6 provides
an example how the values of the objective function (8) (the new infective cases relative
to the total population size of whole patches) vary for these two scenarios.

0 5 10 15 20 25
2.48

2.6

2.7

2.8

2.9

t
a
 (years)

J(
u)

spent in [25−t
a
, 25]

spent in [0, t
a
]

Figure 6: The value of the objective function J(u) for the two uniform strategies, as a
function of ta. The solid line corresponds to U1 and the dashed line to U2.

We see from Figure 6 that, for this particular problem, policy U1 is always better
than U2. The best U1 policy is the one with ta ≈ 9 (i.e., spend all budget uniformly and
simultaneously in the first 9 years for all patches). However, the best objective value for
these scenarios (the bang-bang like structure strategies) is J(u) > 2.48 which is greater
than that obtained by CE.

Varying Time Horizon T

It is interesting to examine how the shape of the control function changes if one varies
the time period T , while keeping other parameters unchanged. Figure 7 shows that the
optimal solutions via CE are qualitatively quite different. For T ≤ 10, all budget is spent
almost uniformly in the interval [0, T ] and for T > 10, the optimal solution has a similar
structure to that in Figure 5.
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(c) The optimal trajectory u

for T = 50 years.

Figure 7: The optimal trajectory u for Problem I obtained via the CE method as the
time horizon T is varied.

Varying Budget K(r)

To see how the optimal solution might depend on the amount of available budget for
a fixed time horizon T = 25, we keep the initial values and other parameters unchanged
from the previous situation and vary only K(r). In particular, the available budget is
decreased or increased by the same amount for each patch. The changes in the optimal
solution are depicted in Figure 8.
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(a) All budgets are decreased
two-fold.
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(b) All budgets are increased
five-fold.
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(c) All budgets are increased
ten-fold.

Figure 8: The optimal trajectory u for Problem I obtained via the CE method as the
budgets K(1) = 10,K(2) = 5,K(3) = 2,K(4) = 7, and K(5) = 10 are multiplied by a
factor 1/2, 5 and 10.

Notice that if all budgets are decreased by a factor of 2 or increased by a factor of 5
(see Figure 8(a)-(b)), the shape of uc∗ qualitatively remains the same as that in Figure
5. However, if all budgets are increased 10-fold, the optimal solution uc∗ becomes similar
to that in Figure 7(a).

To further examine the effect of K(r) on uc∗ , we increase the available budget only
in patches 3 and 5. Figure 9 shows that the shapes of the control function for the other
patches, u(1), u(2), and u(4), remain the same as in Figure 5.
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(a) K(3) = 20 (10-fold increase) and
K(5) = 50 (five-fold increase).
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Figure 9: The optimal trajectory u for Problem I obtained via the CE method as the
budgets K(1) = 10,K(2) = 5,K(3) = 2,K(4) = 7, and K(5) = 10 are varied.

Although the budgets K(3) in Figure 9(a) and K(5) in Figure 9(b) are both increased
10-fold compared to those in Figure 8(c), the numerical results suggest that the shapes
of u(3) and u(5) are qualitatively different from those in 8(c), where all budgets are
increased 10-fold.

Varying Initial Values IF (r)(0) and IM(r)(0)

To see how the optimal solution depends on the initial values, we change the initial
numbers of infectives in the above experiments. The initial numbers of susceptibles are

kept the same as those in the previous experiments, i.e., S
(r)
F (0) = S

(r)
M (0) = 50,000. We

assume that initially in each patch an equal number of male and female infectives are
present. We consider three scenarios: (1) the number of infectives is small compared to
the number of susceptibles, (2) the number of infectives is equal to the number of sus-
ceptibles, (3) the number of infectives is large compared to the number of susceptibles.
In particular, the number of male/female infectives are 100, 50,000 and 450,000, respec-
tively. The results are depicted in Figure 10. Note that the last scenario (Figure 10(c))
shows the optimal solution when the control is introduced in the endemic equilibrium,

that is, S
(r)
F (0) = S

(r)
M (0) = 50,000, I

(r)
F (0) = I

(r)
M (0) = 450,000.

0 5 10 15 20 25
0

0.5

1

1.5

2

t (years)

u(
t)

 

 

u(1)

u(2)

u(3)

u(4)

u(5)

J(u) = 2.67899255379205

(a) I
(r)
F (0) = I

(r)
M (0) = 100

for all r.

0 5 10 15 20 25
0

1

2

3

4

5

t (years)

u(
t)

 

 

u(1)

u(2)

u(3)

u(4)

u(5)

J(u) = 2.65802695285

(b) I
(r)
F (0) = I

(r)
M (0) = 50,000

for all r.

0 5 10 15 20 25
0

1

2

3

4

5

t (years)

u(
t)

 

 

u(1)

u(2)

u(3)

u(4)

u(5)

J(u) = 2.2998234028131

(c) I
(r)
F (0) = I

(r)
M (0) =

450,000 for all r.

Figure 10: The optimal trajectory u for Problem I obtained via the CE method for three
different scenarios for the number of initial infectives.
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We see that now in every patch the control function initially decreases “linearly”,
just as was the case for patch 1 in the original scenario of Figure 5, where the infectives
are initially concentrated only in patch 1. Interestingly, if the initial number of infectives
is large, it is better to concentrate the funding over the last part of the time period.

Changing the value of βmax

Another possible factor influencing the shape of the control function is the value
of βmax — the rate of HIV transmission in the absence of any control. This parameter
depends on the number of sexual contacts among partners and the probability of infection
per sexual contact [9].

Suppose that βmax is decreased by a factor of 10 compared with the previous experi-

ments. Thus, take β
(r)
max = 0.05 within each patch for r = 1, . . . , 5, and β

(jr)
max = 0.03 from

other patches for j 6= r = 1, . . . , 5. These values of βmax are perhaps more realistic in
actual HIV cases.

Figure 11 shows that the decrease of βmax, when compared with the original setting
of Figure 5, results in a significantly different shape for the controls. In particular, the
controls are now spread out over a much larger time period. Note also that the optimal
objective function value J(u∗) is much smaller than in Figure 5.
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Figure 11: The optimal trajectory u for Problem I obtained via the CE method, using

β
(r)
max = 0.05 within each patch and β

(jr)
max = 0.03 from other patches.

4.2 Problem II (Inter-Patch Infection, Varying Population Size)

For the numerical experiments of Problem II, we use the same initial values and param-
eters as in Problem I. The flow rates of susceptibles are set to be equal to B = 1000 for
each patch, which gives the scaling parameter V = 5 × 105 (approximately equal to the
whole initial population size).

The optimal solution via CE method suggests a much similar result to that in Problem
I, namely most portion of the budget should be spent approximately in the first 9.5 years
for all patches. Moreover, the control functions in [0, 9.5] have again a “parabolic” shape,
except for patch 1 where the infectives are initially concentrated.
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Figure 12: The optimal trajectory u for Problem II obtained via the CE method.

Thus, the best strategy is to allocate the budget in the first 9.5 years, with “parabolic”
control functions for all patches except for patch 1 which has a “linearly” decreasing
control function, spend nothing for the next 13 years, and spend the rest of budget in
the last 2.5 years in a linearly increasing way, for all patches.

When varying the time horizon T or the budget K in Problem II, the optimal tra-
jectories u obtained via CE behave much the same as those in Problem I, as shown in
Figure 13.
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(a) The optimal control
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(b) The optimal control
function u for T = 15.

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

1.2

1.4

t (years)

u(
t)

 

 

u(1)

u(2)

u(3)

u(4)

u(5)

J(u) = 1.80954037062219

(c) The optimal control
function u for T = 50.

Figure 13: The optimal trajectory u for Problem II obtained via the CE method, for
several different time horizons T .

Thus, the optimal strategies suggested via CE for Problem I and Problem II are
quantitatively similar. The shapes of the control functions in both models look similar,
that is, a parabolic-like function in the first 9.5 years, a zero function for the next 13
years, followed by an linearly increasing function in the last 2.5 years.

Our numerical results suggest that allowing for some reallocation of resources over the
time horizon of the problem, rather than allocating resources just once at the beginning
(or at the last) of the time horizon, can quantitatively lead to significant decreases in the
number of new infectives.
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4.3 Problem III (Actual Mobility)

For the numerical experiments of Problem III, we need to specify migration rates of
individuals among patches. We set the same migration rate to v(r) = 10 per unit time,
for all patches, r = 1, . . . , 5. We assume that the probability that an individual leaving
a patch i visits patch j is equal for all patches, so that ρij = 1

R−1 = 0.25, i 6= j. Thus,

the rate at which individuals leaving a patch i visit patch j is vij = ρij v(i) = 2.5. Initial
values and other parameters remain the same as specified in the previous simulations for
Problems I and II.

Solving the problem via CE gives a result as depicted in Figure 14. Note, however,
that the optimal curves are, except for patch 1, significantly lower at the beginning and
end of the time period. The optimal controls for Problem III appear to have a different
structure to those for Problems I and II. However, if we extend the time scale, say
T = 100, see Figure 14, we obtain a similar structure as in the previous problems.
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(a) The optimal control function u for T = 25.
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(b) The optimal control function u for T = 100.

Figure 14: The optimal trajectory u for Problem III obtained via the CE method for 5
patches.

5 Conclusions and Future Research

In this paper, we have formulated various epidemic intervention models for the spread of
HIV in multiple populations and introduced a new CE technique to solve these problems.
The numerical results indicate that the shapes of the control functions for the different
models are qualitatively similar. If the budget is limited and the time horizon large,
the control functions for the patches that are initially free of infectives exhibit a mutual
structure: the first part of the control function is concave, starting and ending at zero,
the second part is zero (no control), and the third part is linearly increasing. However,
the control shapes depend also importantly on the time horizon, available budget, and
the initial number of infectives. The numerical experiments suggest that the controls for
the different patches are highly synchronized. Moreover, they indicate that the optimal
trajectories qualitatively have similar form. Considering other control parameters such as
isolating infectives, HIV/AIDS campaign programming, contact tracing, etc., in a more
complex model with an age structure, risk groups and levels of infectivity could also be a
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future study. Another possible direction for future research is to formulate the epidemic
intervention as a Continuous-Time Markov Decision Process and compare the results to
those in this study. Finally, since the application of the CE technique to optimal control
problems is relatively new, more analytical investigations in this area would be welcome.
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