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Abstract

A recent development of the Markov chain Monte Carlo (MCMC) tech-
nique is the emergence of MCMC samplers that allow transitions between
different models. Such samplers make possible a range of computational
tasks involving models, including model selection, model evaluation, model
averaging and hypothesis testing. An example of this type of sampler
is the reversible jump MCMC sampler, which is a generalisation of the
Metropolis-Hastings algorithm. Here we present a new MCMC sampler of
this type. The new sampler is a generalisation of the Gibbs sampler, but
somewhat surprisingly, it also turns out to encompass as particular cases all
of the well-known MCMC samplers, including those of Metropolis, Barker,
and Hastings. Moreover, the new sampler generalises the reversible jump
MCMC. It therefore appears to be a very general framework for Markov
chain Monte Carlo sampling. This paper describes the new sampler and
illustrates its use in three applications in Computational Biology, specif-
ically determination of consensus sequences, phylogenetic inference and
delineation of isochores via multiple change-point analysis.

Keywords: model determination, Markov chain Monte Carlo, Gibbs
sampler, simulated annealing, string sampler, consensus sequence, phylo-
genetic inference, isochores, multiple change-point analysis.

1 Introduction

Markov chain Monte Carlo (MCMC) sampling (also called Markov chain Monte
Carlo simulation) is a computational technique for simulating the drawing of
a sample from a given probability distribution. MCMC sampling is frequently
used in Bayesian inference to simulate sampling of a posterior distribution.
However, MCMC sampling is not limited to Bayesian applications. In partic-
ular, it is the basis of the versatile optimisation technique known as simulated
annealing (discussed below).

The idea of MCMC is to generate a (time-homogeneous) Markov chain
{Xo0,X1,...} in a target space X in such a way that the limiting distribution of
the chain has the required distribution. The random behaviour of the chain is
governed by a transition kernel K, defined by

K(z,B) = P(X,41 € B| X, = z),

for any z € X and (measurable) subset B of X. For countable X it is easier to
work with the (one-step) transition matrix P instead, which is defined by

P({L‘,y):P(Xn+1:y|Xn:ZE), fanEX-



For non-denumerable X, the Markov chain is usually defined such that the
kernel K has a transition density, also denoted by P, that is,

K(z,B) = /B P(z.y) dy,

so that in this case we may interpret P(z,y) dy as the infinitesimal probability
of jumping from z to (y,y + dy). In our review of the major MCMC samplers
below, we formulate the samplers for the countable case. In that case we assume
that the required distribution, 7 say, has a probability mass function (pmf) f.
In other words n({z}) = f(z), for all z. The samplers are easily generalised
for the non-denumerable case by substituting pmf’s with probability density
functions (pdf’s) and sums with integrals. We will view both pmf and pdf
as a density with respect to some underlying measure — usually based on the
counting or Lebesgue measure.

Metropolis-Hastings Sampler

The original MCMC sampler was developed by Metropolis et al. [15]. This
sampler relies on a symmetric but otherwise arbitrary transition matrix A.
The sampler consists of the following steps performed iteratively.

1. Given X,, = z draw Y € X in accordance with the density A(z,-).
2. Draw a Uniform(0,1) random variable U.
3. U < f(Y)/f(Xy) then set X,,11 =Y, otherwise set X,,11 = X, = z.

The ratio f(y)/f(x) is called the acceptance ratio and the matrix A is called
the proposal transition matrix. The one-step transition matrix P of the Markov
chain generated in this way is given by

P(z,y) = A(z,y) min{M, 1} , TFY.
f(z)
Consequently, using also the symmetry of A, the density f satisfies the detailed
balance equation:

f(z) P(z,y) = f(y) P(y,z) .

In particular, {f(z)} gives the stationary distribution of the Markov process,
that is, > f(z)P(z,y) = f(y) for all y. This is the limiting distribution if
the process is irreducible and aperiodic. (Metropolis’ sampler was actually
somewhat more complicated than this: it involved performing the above steps
for each coordinate separately, and cycling through the coordinates. However,
the sampler described above is the one generally meant when one refers to ‘the
Metropolis sampler’.)

Another MCMC sampler, rarely used but relevant to this paper, was de-
veloped by Barker [1]. It differs from the Metropolis sampler only in that it
defines the acceptance ratio to be f(y)/(f(z) + f(y)), rather than f(y)/f(x).



Hastings [7] generalised both of these samplers by defining the acceptance ratio
to be:

5(2.9)
W ) = Ay
Fy)Aly, =)

where s is a symmetric, non-negative function such that 0 < «a(z,y) <1 for all
z,y € X(z # y). The transition matrix A no longer needs to be symmetric.
With s(z,y) = 1 and symmetric A, Barker’s sampler is seen to be an instance
of Hastings’. With

s(a,y) = min{l L S@A@y) f(y)A(y,x)}

f(y)Aly, =)’ f(z)A(z,y)

and symmetric A, Metropolis’ sampler is seen to be an instance of Hastings’.
When this function s is used with general A, the resulting sampler is known as
the Metropolis-Hastings sampler.

Gibbs Sampler

The Gibbs sampler [Geman and Geman [5], Gelfand and Smith [4]] uses a some-
what different approach. It was originally developed to sample from Gibbs dis-
tributions, but is applicable whenever the state variable is a random vector. Let
the dimension of the state space X be d. Suppose X is a random vector taking
values in X, with density f. Let fi(-|z1,...,Zi—1,%it1,-..,24q) represent the
conditional density of the ith coordinate of X given that the other components
are Ti,...,%i—1,Tit1,---,Lq. LThen the sampler consists of the following steps
performed iteratively:

1. Given X, = (zp.1,-.-,%n.q), generate Y = (Y1,...,Yy) consecutively as
follows:
given the values Y7 = y1,...,Y; 1 = y;_1 draw Y} in accordance
with the conditional density fi(-|y1, ..., %i—1, Tnit1s--->Tn.d)-

2. Let Xpi1 =Y.

Gibbs sampling is advantageous if it is easier to sample from the conditional
distributions than from the full distribution.

Recently, a number of MCMC samplers have been developed for the pur-
poses of Bayesian model determination and comparison [2, 19, 6]. These sam-
plers allow transitions between models that are parameterised differently, or
that are not amenable to parameterisation, and are here referred to as model-
switching samplers. One reason why these samplers are important is that they
enable Bayesian inference in situations where there is uncertainty about not
only the parameters of a model, but also about the model itself. Such samplers
can be used for Bayesian model selection, model evaluation, model averaging
and hypothesis testing. They can also be used in non-Bayesian applications.
For example, they can be used in the context of simulated annealing to search
for optima in spaces where the dimension of points is not fixed.



The reversible-jump MCMC sampler [6] is a model-switching generalisation
of the Metropolis-Hastings sampler. The generalisation involves two elements.
The first is to allow countably many move types, each with its own proposal
transition matrix. Let o,(m) be the probability of selecting move type m when
the current element is z and let A,, be the proposal transition matrix for move
type m. The second element is to define an individual acceptance ratio «,, for
each move type m as

ay(m) f(y) Am(y, ) }

In this paper, we develop a model-switching sampler that generalises the
Gibbs sampler in a natural way. In so doing, we refute Green’s claim that “the
Gibbs sampler hardly even makes sense when z has a length that is not fixed,
and elements which need not have a fixed interpretation across all models” [6].
Interestingly, it turns out that the new sampler encompasses the samplers of
Metropolis, Barker and Hastings as particular cases. Moreover, it encompasses
the reversible jump MCMC. It therefore appears to provide a very general
framework for MCMC sampling.

2) m(2,) = min {1,

Simulated Annealing

In our examples, we make much use of the simulated annealing technique. This
technique uses MCMC sampling to find a mode of a density f — that is, a
point where f is maximal. It involves defining a family of densities of the
form f,(x) o [f(x)]'/7 where the parameter v is called the temperature of the
distribution. MCMC sampling is used to draw a single element zj from f., , for
successively lower temperatures 71,2, . . .. Each element zj, is used as the initial
element of the next chain. As the temperature is reduced, the distributions
become sharply peaked at the global maxima of f. Thus the x; converge to a
point. The xj can converge to a local maximum, but this possibility is reduced
by careful selection of successive temperatures. The sequence of temperatures,
or annealing schedule, is therefore critical to the success of the method. In
the examples described in this paper, the annealing schedule is a geometric
progression starting with a specified initial temperature and multiplying by a
cooling factor in the interval (0, 1) after each iteration. Simulated annealing can
also be applied to non-probabilistic optimisation problems. Given an objective
function S(z), one defines a Boltzmann distribution via the density f(z)
e 5@ or f(x) ¢3(®) depending on whether the objective is to minimise or
maximise .S. Global optima of S are then obtained by searching for the mode of
the Boltzmann distribution. Thus, model-switching samplers extend the scope
of simulated annealing to optimisation problems in spaces composed of various
‘models’.

The paper is structured as follows. In Section 2, the new sampler is de-
scribed for countable spaces and the common MCMC samplers are shown to be
instances of it. In Section 3, we illustrate the new sampler on some countable
spaces. In Section 4, we extend the sampler for non-denumerable spaces, and
show that it generalises the reversible jump MCMC. In Section 5, we present an



example illustrating the use of the sampler in a non-denumerable space. Some
concluding remarks are made in Section 6.

2 A Generalised MCMC Sampler

Suppose that one wishes to sample from a distribution with density f over a
space X. We refer to X as the target set. The Markov samplers mentioned
above generate a Markov chain in X. The sampler presented in this section is
different in that it generates a chain in a space Z x X, where 7 is referred to
as the index set. Its role is to provide an index for the types of transitions that
can be made at each step of the chain. To motivate the introduction of this set,
we show that it arises naturally within the context of the Gibbs sampler.

Let G := {X1, Xy,...} be a Markov chain generated by a Gibbs sampler in
a target set of dimension d. Each new element X, ; of the chain is obtained
by updating each coordinate of X, in turn, thus generating a sequence of d el-
ements X1, Xpo,..., Xpg in X, where the last element is equal to X, 1. (It is
important to note that X,,; does not refer to the ith coordinate of X,,, but rather
to the element of X obtained after updating the ith coordinate.) The stochas-
tic process G' = {X11,...,X14, Xo1,- .-, Xo4, X31,...} has the same limiting
distribution as G, but is no longer a Markov chain. However, if we define the
index set Z = {1,2,...,d} then the chain G" = {(1, X11), (2, X12), ..., (d, X14),
(1, X91),...} is a Markov chain in Z x X, and its projection onto X is G'. Thus
the Gibbs sampler may be regarded as generating a Markov chain in the space
T x X whose projection onto X has the required limiting distribution.

This perspective on the Gibbs sampler can be readily generalised in the
following manner. Given a target set X, and an index set Z, let f CZ x X be
such that the projections of i onto X and T are surjective. For each x € X, let
Q(z) be the set {(k,z) € U : z = z}. The set Q(z) functions as a catalogue of
the types of transitions that one may make from the element z. For example,
in the Gibbs sampler Q(z) = Z x {z} = {(1,z),(2,z),...,(d,z)} and may be
interpreted as a list of the coordinates of z that may be updated. See Figure 1
for an illustration.

u = (i,z)

R (i, x) ()

I —

Figure 1: An illustration of the definitions

To select the type of transition to be made at a given step of the chain, we
define for every z € X a transition matrix @, on Q(z). Let g, be the density



of a distribution that is stationary with respect to ;. It will be convenient to
also define a “global” transition matrix () on U by

Qz((i,2), (4,y)),  for (j,y) € Qz),

0 otherwise.

Q((i,.’L‘), (jay)) = {

For the Gibbs sampler we have

v 1 ifj=itlorj=1i=d
Q((Zam)a (j,x)) - { 0 otherwise.

This transition matrix cycles through the d types of update that may be per-
formed on z.

Having selected the type of transition to be made, a transition of that type
is then selected in the following manner. For each u = (i,z) € U, let R(u) =
R((i,z)) = R(i,x) be the set of possible transitions (see Figure 1). We require
that these sets form a partition of U, that is:

(3) vER(U) <= uecR@W)
and
(4) veER(u), weR(v) = weR(u).

Note that u € R(u). On R(u) we define a transition matrix R, as follows. Let
u = (i,z), v = (j,y) and w = (k, z) then
__ el

Y. (D) a(w)

weR(u)

(5) Ry(u,v)

Again, it will be convenient to also define a “global” transition matrix R on U
by

R(z,m)((zam)a(jay)) for (]7?/) € R(Z,ZE),
0 otherwise.

(6) RW@%@@)Z{

For the Gibbs sampler, R (7, z) is the set of vectors (7, %) such that all coordinates
of y are the same as those of z except for possibly the i-th coordinate. Moreover,
¢z is the discrete uniform distribution on Q(x) — in other words ¢, is constant.
Thus for the Gibbs sampler R takes the form:

for (4,y) € R(i,z),
R((i,x),(j,y)) = Z
0 otherwise.

Returning to the general case, we now consider a Markov chain {U1,Us, ...}
on U with transition matrix P defined by

P=QR.



Note that for u = (i,z) and v = (4,y),

P(u,v) = Z Q(u, w) R(w,v) = Q(u, w) R(w,v) .

weld weQ(z)NR(v)

In many instances, the intersection of Q(z) and R(v) in the formula above
must be either empty or contain only a single element (k,z), in which case
P((i,z), (J,v)) = Q((i,x), (k,x)) R((k,z),(j,y)). This is the case in the Gibbs

sampler, where

V) if(j=i+lori=d,j=1)

z and (j, R, ),
P((i,2), (j,y)) = Y. [ (4,y) € R(j,z)

(k,2)ER(j,x)

0 otherwise.

Let i be the distribution on ¢ defined by

n({G,2)}) = f(#) (i) ,

where ¢(7) is an abbreviation for ¢, ((i,x)). Let us write u(i,z) for pu({(i,z)}).
It is easy to check that u is indeed a distribution on /. Moreover, u is stationary
with respect to R. This follows from the fact that the local balance equations

(7) (i, ) R((i,z), (7,y)) = n(,y) R((4,y), (i, 7))

hold, and that consequently

> uli, n)R((,2), (G,y) = ply) -

(i,z)eU

The distribution p is also stationary with respect to @), since

> ulh,n) Q). (Ghy) = Y. FW)a()QG,y), (G.y)

(i,x)eU (1.9)€Q(y)

= f(y) ay(4) = u(4,y) -

Theorem 2.1 The distribution p is stationary with respect to P.

PrROOF. This follows directly from the fact that P = QR and that p is station-
ary for both @) and R. Specifically, in matrix notation

pP =pQR=pR=p.
O

Note that if P is irreducible and aperiodic, then y is also the limiting dis-
tribution of the process P.
Based on the discussion above we propose the following algorithm.



Algorithm 2.1 [Generalised MCMC Sampler] Starting with an arbitrary
Uy, perform the following steps iteratively:

1. [Q-step] Given U,, = (i,x), generate V € Q(z) by drawing from the
distribution with density Q((3, z), -).

2. [R-step] Given V' = (j,y), generate W € R(j,y) by drawing from the
distribution with density R((4,v),-).

3. Let Uy = W.

This algorithm generates a Markov chain {U(, U}, ...} = {(Io, Xo), (11, X1),
...} such that the limiting distribution of X,, as n — oo is f, provided that P
is irreducible and aperiodic.

The above discussion makes clear that the Gibbs sampler is an instance of
our generalised Markov sampler. With a slight modification, the sampler can
be further generalised to include as instances Metropolis’ sampler, Hastings’
generalisations, and the reversible jump sampler. The modification is to redefine
R as:

(3w fWel) . R(u)\ {u}
S f=)a (k)
wER(u)
(8) R(u,v) =q 1 Z R(u,w) ifv=u
weR(w)\{u}
0 otherwise,

\

where u = (i,z), v = (J,y), w = (k,z) and s is a non-negative, symmetric

function such that
Z R(u,w) < 1.
weR(u)\{u}
Note that the local balance equations (7) still hold and hence p is still stationary
with respect to R and P.

We now show that Hastings’ sampler (and by implication, the samplers of
Metropolis and Barker) is an instance of our generalisation. We will see that
the transition matrix () functions as the proposal transition function, whereas
R functions as the acceptance ratio. Let the index set Z be a copy of the target
set X and let Y =Z x X. Then for each z € X, the set Q(z) =Z x {z}. Now,
given an arbitrary transition matrix A on X, or more specifically the proposal
transition matrix used by Hastings’ sampler, define Q. ((i,x), (j,x)) = A(x, j),
for all j € Z, so that

Qi) G = { AGH R

The transition (i,2) — (j,z) may be interpreted as the proposal of a new
element j. Note that since Q.((i,z),(j,z)) does not depend on i, ¢, :=
Q:((i,x),-) = A(z,-) is the stationary density of Q, on Q(x).



Now define R (i, xz) = {(i,x), (z,4)} for each (i,z) € U. Then (8) reduces to:

(- s((d,2), (z,1))
f(z)A(z, i)
f@)A(, )
1_R((ia$)7($ai)) if (j,’y) = (Zam)

if (4, y) = (1)
1+

R((iax)a (.77 y)) =

L 0 otherwise
or alternatively
oz, 1) if (j,y) = (z,19)
R((Zax)a(]ay)) = 1 —a(x,i) if (]7?/) = ('L,IL‘)
0 otherwise,

where « is the acceptance ratio given in (1). The transition (i,z) — (x,7) may
be interpreted as acceptance of the element i. Thus, in effect, @) is used to
propose a new element in accordance with the transition matrix A, and R is
used to accept or reject it in accordance with the acceptance ratio a(z, j). This
is exactly the procedure used by Hasting’s sampler.

3 Applications in countable spaces

In this section, the sampler is applied to two problems involving countable
spaces. The first example illustrates that the new sampler extends the scope of
the Gibbs sampler to spaces that do not have a fixed coordinate system. The
second example illustrates that the new sampler extends the scope of the Gibbs
sampler to spaces where the dimension of elements is not fixed.

3.1 Coordinate-free Gibbs sampling with an application to phy-
logenetic inference

The Gibbs sampler is applicable to spaces that can be parameterised in terms
of some fixed system of coordinates. It involves systematically updating these
coordinates one at a time (or sometimes in blocks). However, the essential
idea of the Gibbs sampler, that of systematically updating parts of the pre-
vious element while holding the other parts constant, is potentially useful in
many instances where the space cannot be parameterised using a fixed coordi-
nate system, or where the coordinates cannot be varied independently. In this
section, we demonstrate that our generalisation of the Gibbs sampler enables
Gibbs-like sampling of such spaces. We refer to the approach as coordinate-free
Gibbs sampling. One application of coordinate free Gibbs sampling is in solving
combinatorial optimisation problems via simulated annealing.

Coordinate-free Gibbs sampling is applicable whenever a fixed, finite num-
ber d of move types can be defined for each element x in the target space X.
Let M(x) be the set of move types available at z. In the conventional Gibbs
sampler, the d move types involve updating each of the d coordinates. Here,



however, the move types need not be defined in terms of coordinates at all.
Moreover, a different set of move types may be defined for each z € X.

In order to implement systematic updating, one must be able to determine
what move type one is currently up to. The move types available before a
transition must therefore be placed in correspondence with those available after.
This is achieved by defining a bijection h, , between M(z) and M(y) for all
adjacent elements x,y € X. (An element y is adjacent to x if it can be reached
in a single transition from z.) Now, given an ordering of M(x), one may use
hg,y to induce an ordering of M(y) at an adjacent element y. Continuing this
process for a sequence of transitions, one may induce an ordering of M(z) at
an element z € X not adjacent to . However, in general, this ordering is
not unique. An arbitrary element z € X may be reached by more than one
sequence of transitions from z, and the induced order of M(z) may depend on
the sequence of transitions used. We therefore allow more than one ordering of
the move types at each element. Let ®(z) be the set of allowed orderings (that
is, permutations) of M(x), for each x € X. If a canonical ordering of move
types can be defined for each x € X, as in the conventional Gibbs sampler,
then ®(z) need only contain a single permutation.

The coordinate-free Gibbs sampler can now be described in the notation of
Section 2. Define an index space Z = Ugzex (®(z) x {1,...,d}) and let Q(z) =
(®(z)x{1,...,d})x{z} for each z € X. Thus an element (¢, m,z) = ((¢,m), )
of Q(z) contains a permutation ¢ of the move types at z and a position m in
that permutation (so ¢(m) is the current move type). Define U = Uzcx Q(z).
For the Q-step, define

L ifi=(pm),j = (gm+1). ¢ € D).
. . m=1,...,d—1
QA2 G =9 iti= (g g = (#.1).0.00 € B()

0 otherwise.

where M is the cardinality of ®(z). Thus the Q-step cycles through M/(x)
in the order induced by ¢ until it reaches the last move type, at which point
it selects a new permutation ¢ uniformly and randomly in ®(z) and begins
again. (Selecting a new bijection at the end of each cycle ensures that @, is
irreducible and aperiodic. This may not always be necessary to ensure that the
overall process is irreducible and aperiodic.) Note that the limiting distribution
of @y is the uniform distribution ¢, (i, z) = 1/(Md).

Next, we define a partition of U for the R-step. Let R(¢,m,z) = {(hyy o
$,m,y) €U : x — y is a move of type ¢(m)}. Note that h,, o ¢ € ®(y) is the
ordering of move types at y induced by the transition x — y. The R-step of the
algorithm may now be performed by selecting an element of R(¢p, m,z), with
the probability of selecting each element given by Equation (9).

AN for (.77 y) € R(i,.’L‘),
O RGo.Gy) =] 2= 1@

0 otherwise.

10



Here f is the density of the target distribution. Note that the term ¢, (i, )
has cancelled out, thus giving the conventional Gibbs formula. However, the
absence of a fixed co-ordinate system differentiates this sampler from the con-
ventional Gibbs sampler.

The coordinate-free Gibbs sampler is summarised in the following algorithm.

Algorithm 3.1 [Coordinate-free Gibbs Sampler] Starting with an arbi-
trary £ € X and ¢ € ®(z), set Ug = (¢, 1, z), and perform the following steps
iteratively:

1. [Q-step] Given U,, = (¢, m,z), set V = (¢,m+1,z) if m < d. If m = d,
set V = (¢,1,z) for ¢’ selected uniformly and randomly from ®(z).

2. [R-step] Given V = (¢/, m’, z), generate W = (hy o', m’, y) by drawing
from the distribution with density R((¢’,m’, ), -) defined in Equation (9).

3. Let Uy = W.

Application to phylogenetic trees

To illustrate coordinate-free Gibbs sampling, we describe a sampler for a space
of phylogenetic trees. Such spaces arise in phylogenetic inference, that is, in-
ference of evolutionary history. MCMC samplers for phylogenetic inference in
a Bayesian context have been developed by Yang and Rannala [20], Mau and
Newton [14], Larget and Simon [13], and Huelsenbeck [8]. The sampler pre-
sented here is applied in a non-Bayesian context. However, it can be adapted
for Bayesian phylogenetic inference.

A phylogenetic tree for a set of taxa is a graph showing putative evolutionary
relationships amongst those taxa. For example, the three possible phylogenetic
trees for the taxa {mouse, human, pig, chicken} are shown in Figure 2(a). These
trees are said to be unrooted because they show the divergences between taxa,
but not the point of origin or root corresponding to the common ancestor. A
rooted tree can be constructed by inserting a node into any edge of an unrooted
tree, as shown in Figure 2(b). A sub-tree of an unrooted tree is obtained by
deleting an edge of the tree and selecting one of the connected components, as
illustrated in Figure 2(c).

Let the target space X be the set of all possible unrooted phylogenetic trees
for n taxa. For each x € X, we consider move types of the form illustrated
in Figure 3. These move types involve removing a sub-tree (Figure 3(b)) and
re-inserting it at a new position in the tree (Figure 3(c), (d) and (e)). However,
moves involving sub-trees containing n — 1 taxa are excluded, since there are no
alternative positions for such sub-trees. There are 3(n —2) remaining sub-trees,
and thus the number of move types is d = 3(n — 2). The number of moves
of each type is equal to the number of edges remaining after the sub-tree is
removed. For each x € X, let ®(x) be the set of all possible permutations of
the 3(n — 2) move types at z. The cardinality of ®(z) is [3(n — 2)]!.

For adjacent trees x and y, a bijection hy, from the sub-trees of z to the
sub-trees of y can be defined as follows. Suppose that « and y differ only by the

11



Human Pig Pig Human Chicken Pig

(€)
Mouse Chicken Mouse Chicken Mouse Human
Human Pig Human Pig
Root Root Root
(b) ()
Mouse Chicken Mouse Chicken

Figure 2: (a): Unrooted trees. (b): A rooted tree (the root shown is not the
true root). (c): Two sub-trees obtained by deleting an edge.

>i< >(b)/®
Y >i<
Figure 3: (a): Original Tree. (b): Tree with sub-tree removed. (c), (d) and (e):
Trees obtained by inserting sub-tree into remaining edges.

C)

placement of a sub-tree a (Figure 4, a and b). Removing a from z leaves two
sub-trees b and ¢ (Figure 4c). Similarly, removing a from y leaves two sub-trees
d and e, where b is a sub-tree of d and e is a subtree of ¢ (Figure 4d). Now,
sub-tree a and all its sub-trees are unaltered by the transition x — y, so they
can be mapped to themselves. Moreover, the complements of these sub-trees
in z can be mapped to their complements in y. (The complement of a sub-tree
is the other sub-tree obtained by deleting the same edge as in Figure 2 (c).)
Sub-tree b maps to d, and its complement maps to the complement of b in y.
Proper sub-trees of b are unaltered by the transition, so they can be mapped
to themselves and their complements can be mapped to themselves. Sub-tree ¢
maps to e, and its complement maps to b. Proper sub-trees of ¢ other than e are
altered only by the possible insertion of a, so a natural mapping exists for them
and for their complements. Finally, sub-tree e of x maps to the complement of



Sub-tree a

C. d.

Sub-tree d Sub-tree e

Sub-tree c /j 3
\4

Sub-treeb \3 . \%

Figure 4: (a): Tree x and subtree a. (b): Tree y differs from tree z in the
placement of subtree a. (c¢): Removing a from z leaves subtrees b and c. (d)
Removing a from y leaves subtrees d and e.

d in y and the complement of e in £ maps to the complement of e in y.

If we now substitute these terms into Equation 9 and Algorithm 3.1, the Q-
step consists of determining the next sub-tree to be moved, whereas the R-step
consists of selecting a new position for that sub-tree.

We are now almost ready to apply the sampler, but first we must define a
scoring function S. To do this, we require some additional background on DNA
and phylogenetic inference. DNA molecules consist of chemical components
called nucleotides, arranged in a linear sequence. There are only four different
nucleotides (labelled A, C, G and T), but they can be arranged in any order
to generate a vast range of molecules. DNA is copied and passed from parents
to offspring. Occasionally a mutation occurs during copying so that the DNA
of the offspring differs from that of its parents. Mutations accumulate over
time, and thus the DNA in different lineages diverges from that of the common
ancestor.

In one approach to phylogenetic inference, the first step is to align the se-
quences. An example of a sequence alignment is shown in Figure 5. Each
column of the alignment contains characters that are thought to be derived
from a common ancestral character. The symbol ‘~’ indicates that a character
is absent at that position, either because it has been deleted, or because the
other characters in that column have been inserted. The next step is to deter-
mine the tree that best explains the variations observed in the columns of the
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GCAAGGTA---CCACAACTT
GTGAGGTA---CCACAAGTG
GTGAGGTA---CCACAAGTT
GTGAGGTA---CCACAGCTT
GCGACGTGGTACCAGAAGTG
GTGACGTG---CCACAAGTT
GTGACGTG——-—-CCACAAGTC

Figure 5: Example of a sequence alignment

alignment. One way to score a tree is to sum the minimum number of point
mutations (single-character insertions, deletions and substitutions) that must
have occurred in each column if that tree is correct. Let the score for a tree z
be S(z). This score can be computed using an algorithm described by Fitch [3].
A tree that minimises S is said to have mazimum parsimony.

We used Algorithm 3.1 in the context of simulated annealing to determine
a maximum parsimony tree for a data set described by Murphy et al. [16]. The
data set consisted of an alignment of 44 DNA sequences in 16,397 columns. The
sequences were obtained by concatenating 19 gene sequences from the genomes
of 42 placental mammals and 2 marsupials. Some sequences contained long
deletions; indeed, whole genes have apparently been deleted from some of the
genomes. This is inconvenient for parsimony analysis, since each occurrence
of the symbol ‘— is interpreted as a single-character insertion or deletion. We
therefore replaced all instances of the gap character ‘~’ with a wild-card char-
acter ‘7°, indicating that the character at that position could be ‘A’, ‘C’, ‘G’,
‘T’ or ‘~’. (Wild-card characters are implemented as a set {A,C,G, T, —}, and
are handled in the same way that sets at internal nodes are handled by Fitch’s
algorithm.) This adjustment discards some information, but it means that
insertions and deletions make no contribution to the score.

The algorithm ran in less than a minute on a PC with a Pentium IV pro-
cessor. In each iteration, O(n) sub-trees are trialled in O(n) positions, and the
computation of each score takes O(L) time (where n is the number of sequences,
and L the alignment length). Each iteration therefore takes O(n2L) time. In-
dependent runs of the algorithm invariably converged to one of the two trees
shown in Figure 6. These two trees differ only slightly in their score. Trees
were drawn using TreeView [18].

The variations between these trees and that of Murphy et al., and the rea-
sons for them, would make for an interesting discussion. However, these matters
go beyond our current intentions.

3.2 The string sampler

In this section, we describe a Markov chain sampler for a density f on a space
X consisting of finite strings formed from characters of a finite alphabet 3. The
authors have previously used this sampler to construct consensus sequences
for families of DNA sequences [10] and to infer original DNA sequences from
descendant sequences [11, 12]. We include this example here because it is a
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Figure 6: Maximum parsimony trees for the placental mammals.

simple illustration of the use of the generalised Gibbs sampler in a space where
the dimension varies, and in order to elaborate on relevant technical details not
covered in our earlier papers.

Note firstly that if the strings in X are all of a fixed length L then the
conventional Gibbs sampler can be applied, since each string is a vector of L
coordinates, with each coordinate taking a value in 3. One may therefore cycle
through the coordinates, updating each one in accordance with the correspond-
ing conditional distribution. However, since X contains all strings of any finite
length, the number of coordinates varies from point to point, and the conven-
tional Gibbs sampler does not apply. The sampler must be able to step between
strings of different lengths. We propose an algorithm that uses the new sam-
pler to cycle through the coordinates just as in the Gibbs sampler, but allowing
characters to be deleted or inserted between adjacent characters or at the ends
of the string.

We first describe the algorithm using the notation of the previous section.
The target set is X'. For ease of description, we append a terminating character
to each string so that we may refer to “character L + 1”7 of a string with length
L.



For each string x € X, we define the following index states. In state (n,I),
a character insertion may be considered immediately in front of character n,
where 1 < n <|z|+ 1, |z| denotes the length of z, and character |z| + 1 is the
terminating character. In state (n, D), deletion or substitution of character n
may be considered, where 1 < n < |z|. Thus the index set is Z = {1,2,...} x
{I,D}. For each z € X let

Oz) ={(n,I,z) :n=1,...,]z|+1} U {(n,D,z) :n=1,...,|z|} .

Note here the abbreviations (n, I, z) and (n, D, z) for ((n,I),z) and ((n, D), z).
Henceforth we will omit similar brackets where possible. The state space U
is defined as the union of the sets Q(x). For each z we define the transition
matrix Q; on Q(z) by

1 fori=(n,I),j=(n,D),n=1,...,|z|,
) , )1 fori=(|z|+1,1), j =(1,1),
Qm((zax)a(]ax)) - 1 fori:(n,D)’j:(n 1,[), n=1, ,|$|a
0 otherwise.

For fixed z, this transition matrix cycles through the 2|z| 4+ 1 states of Q(z)
alternatively considering insertions and deletions (see Figure 7). The stationary
distribution of @ is the discrete uniform distribution on Q(z), thus, ¢,(i,z) =
1/(2]z] + 1). The above specifies the Q-step of the sampler. Next, we specify

Figure 7: The transition graph for Qy

the R-step. For each string z let z;7(a) denote the string obtained from z by
inserting character a immediately in front of the nth character of z. Similarly,
let x,(a) denote the string obtained by replacing the nth character of z by a.
Finally, let z,; be the string obtained by deleting the nth character of z. Now
define
R(n,I,z) = {(n,I,z)} U {(n,D,z}(a)) :a € X},

and note that R(n,D,z) = R(n,I,z, ). The transition function R is defined
via (5) and (6) as

fly)/ 2yl +1)
f(2)/(2]z] +1)

for (4,y) € R(i,x),
R((Z,:I:),(j,y)) = Z

(k,z2)ER(1,x)

0 otherwise.

The discussion above leads to the following algorithm.
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Algorithm 3.2 [String Sampler] Starting from an arbitrary U, perform
the following steps iteratively:

1. [Q-step] Given U,, = (i,), let (j,y) € Q(z) be the immediate successor
of (i,z) in the transition graph of Figure 7.

2. [R-step] Generate W € R(j,y) by drawing from R((j,y),-). Specifically:

(a) [Insertion] If j = (n,I), randomly select a string Z from {y} U
{y,f (a) : a € ¥} where y is weighted by f(y)/(2|y| + 1) and y;' (a) is
weighted by f(y;'(a))/(2]y| + 3) for each a € 2. If Z = y, then put
W = (n,1,y); if Z =y, (a) put W = (n, D,y (a)).

(b) [Deletion/Substitution]. If j = (n, D), randomly select a string Z
from {y,, }U{yn(a) : a € £} where y,, is weighted by f(y~)/(2|y|—1)
and yy,(a) is weighted by f(yn(a))/(2|y| + 1) for each a € 3. If Z =
Yp , then put W = (n, I, y,,); if Z = yp(a) put W = (n, D, yn(a)).

3. Let Uy = W.

Remark 3.1 Note that the characters in X can be any objects whatsoever,
and hence the algorithm is not limited to biological sequences. It can be used
in any space where the elements can be represented by text strings formed from
a finite alphabet.

4 Generalising for non-denumerable spaces

In our third and final example (Section 5), the generalised Gibbs sampler is
applied to a problem involving a non-denumerable target space. We therefore
digress briefly to discuss the implementation of the sampler in non-denumerable
spaces. We also show in this section that the reversible jump MCMC is a special
case of the generalised Gibbs sampler.

The extension of the sampler to non-denumerable spaces is fairly straight-
forward. The sets X, Z, U, Q(z) and R(u) may all be defined as in Section 2,
except that some or all of these sets may now be non-denumerable. Note also
that f and ¢, are densities with respect to reference measures that need not be
counting measures. We find that an assumption has to be made to ensure that
Ry (u,-) has a density with respect to a convenient reference measure.

Suppose that the target distribution has density f with respect to some
reference measure ¢ on X. Suppose further that for each z the stationary
distribution of ), has density ¢, with respect to some reference measure v, on
Q(z). We construct a reference measure £ on U by putting

£(B) = /X (B 1 Q(x)) di(z)

for all measurable sets B. We assume that the following holds:

Assumption: There exists a measure ¢ on the set R = {R(u) : w € U} and
measures 7, on 1 for each » € R such that

£(4) = /R (AN ) d(r)
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for all measurable sets A. In other words, the reference measure £ can be
decomposed into reference measures on the sets R(u).

Now we can define p to be the measure on U with density g(i,z) :=
f(x) qz(i,2) with respect to £. Moreover, we set Ry(u,-) to be the density
with respect to 1, on r = R(u) given by

_ f(y) ay(v)
f,« f(Z) QZ('w) dny (w) ’

withu = (4, z),v = (j,y) and w = (k, z). Alternatively, we may define Ry (u,-)
to be the density with respect to 7, on r \ {u} given by

s(u,v) f(y) gy(v)
f,« f(Z) qz ('w) dny (w) ’

(10) Ry (u,v)

(11)

and assign probability mass

fr\{u} S(U, v)f(y) Qy(v)dnr (v)
S, f(2) ¢z (w) dnr (w)

to u. The function s must be symmetric and non-negative, and must satisfy

1—

ff,«\{u} 3(“’7 v)f(y) Qy (v)dnr (v)
S 1(2) g:(w) dny (w)

Under the assumption above we can now extend ), and R,, into transition
densities () and R on U with respect to £&. One may show, although we shall
not do so here, that y is stationary with respect to ) and R. Consequently, p is
the limiting distribution of the chain produced by Algorithm 2.1, provided the
chain is irreducible. One may also show that the R-step is reversible, though
the Q-step may not be.

<1

Reversible jump MCMC sampler

In the remainder of this section, we show that the reversible jump MCMC
sampler (Green, [6]) is an instance of the new sampler. Let M be the countable
set of move types used in the reversible jump MCMC and let the index set Z be
M x X. Thus each element of Z consists of a move type m € M and a proposed
new element x € X. Put Y =7 x X and Q(z) = Z x {z}. Define a probability
distribution on Q(z) with density g, (m,y,x) = oz(m) A (z,y) with respect
to some 1., where (m,y, z) is an abbreviation for ((m,y),x), o,(m) is the the
probability of selecting move type m when at z, and A,,(z,-) is the density for
move-type m at x. Note that by definition

Z/ qz(m,y, ) dip,(y) =1, forall z .
—Jx

Define a transition density Q. ((mo,yo0,z0), (m,y,2)) = gz(m,y,z) on Q(x)
and note that g, is stationary with respect to Q;. Extend @), to a transition
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density @ on U. Selecting a new element (m,y,z) € U in accordance with @ is
equivalent to selecting a move type m with probability o,(m) and proposing an
element y in accordance with the density A,,, as in the reversible jump MCMC.
This completes the Q-step.

For the R-step, we must first define a reference measure £ on Y. We assume,
as in Green [6], that there is a symmetric joint measure &, on X x X for each
move type m. Define £(A) = Y &n(ANUy,) for all measurable sets A C U,
where U, = {(m,y,z) €U : z,y € X} CU. Note that &, may legitimately be
regarded as a measure on U,,, since that space is isomorphic to X x X. Let f be
the finite density of the target distribution and define f,,(z,vy) = f(z)An(z,v).
We may now define a measure p with density oy, () fin (z,y) at (m,y,z) with
respect to &.

Next, define a partition of U consisting of the sets R(m,y,z) = {(m,y, ),
(m,z,y)} for all (m,y,z) € U. It can be shown, using the symmetry of &,
that ¢ decomposes into counting measures on the sets R(m,y,z). That is,
ne({(m,y,x)}) = n({(m,z,y)}) =1 for all r € R. Consequently, putting

T (y) fm (Y, ©) }
Um(m)fm(ma y)

14+ Um(m)fm(ma y)

Om(Y) fm(y, )’ b

s((m.y, @), (m,z,y)) = min{

and substituting this into (11) gives the transition matrix

_J om(@y)  ifo=u=(my )
Ry(u,v) = { 1 —ap(z,y) ifv=(m,m,v)

where

om(y).fm (Y, ) }
om(2) fm(z,y) )

Thus, selecting a new element (m, z,y) in accordance with the global transition
matrix R (defined as in (8)) is equivalent to accepting the proposed y with
probability a;,(z,v), as in the reversible jump MCMC.

() = min{l,

5 Example: Isochore delineation

In this section, the generalised Gibbs sampler is used to segment a long DNA
sequence into intervals of approximately uniform composition. The genomes
of complex organisms, including the human genome, are known to vary in GC
content along their length. That is, they vary in the local proportion of the
nucleotides G and C, as opposed to the nucleotides A and T. (The reason
that G and C are grouped together, and A and T are grouped together, is
that DNA is a double-stranded molecule in which G’s on one strand bind to
C’s on the other, and similarly for A’s and T’s. Thus the proportions of G
and C are always equal in double-stranded DNA, as are the proportions of
A and T. These equalities are known as Chargaff’s rules.) Changes in GC
content are often abrupt, producing well-defined regions called isochores. An
attempt to delineate isochores in several genomes is documented in [17] and the
website http://bioinfo2.ugr.es/isochores. The example given here is not
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so ambitious, although the approach we develop seems a promising one for large-
scale studies of isochore structure. We model the problem as a multiple change-
point problem, that is, a problem in which sequential data is separated into
segments by an unknown number of change-points, with each segment supposed
to have been generated by a different process. Multiple change-point problems
have previously been used to illustrate model-switching samplers [6, 19].

Firstly, let us formulate the problem in mathematical terms. A sequence
a = {ay,...,ar} of length L is given, where a,, € {A,C,G,T}. The sequence
may be converted to a binary sequence b = {bi,...,br} in which b,, = 1
if a, € {C,G} and b,, = 0 otherwise. A segmentation of the sequence is
specified by giving the number of change-points N and the positions of the
change-points {c1,...,cy}, where 1 < ¢; < ... < ¢y < L. In this context, a
change-point is a boundary between two adjacent segments, and the value ¢, is
the sequence position of the leftmost character of the segment to the right of
the nth change-point. A maximum number of change-points N,,q, is specified,
where 0 < N < Ny < L. It will also be convenient to define ¢g = 1 and
cn+1 = L+ 1. The model here assumed is that within each segment characters
are generated by independent Bernoulli trials with probability of success (that
is, a ‘1’) 6,, where 0 < 6, < 1. (For brevity, we henceforth refer to the
probability of success for a given segment as the Bernoulli parameter for that
segment.) Thus a complete model of the process by which the sequence was
generated consists of the elements (N, c¢y,...,cn,00,...,0xn) and the space of
all such models is X = UN7" {N} x Cy x (0, 1)N+!, where Cxy = {(c1,...,cn) €
{2,...,L}"N :¢; < ... < cn}. We represent an element of X by (N, c,6), where
c €Cy and 6 € (0,1)NV+L.

To formulate the problem in terms of a Bayesian model, a prior distribution
must be defined on X'. As a prior distribution on the number of change-points
we take a truncated Poisson distribution. We assume a uniform prior on Cy
and uniform priors on (0, 1) for each #,,. Thus the overall prior is proportional

to )

MWL -1\~

NI\ N ’
at © = (N, c,0), where X is a hyper-parameter which is taken as given. The
posterior distribution is therefore

N
F(@) oc AN (L — 1= N)LT [ oRtement) (1 — 6,,)Oement),
n=0

where I(cp, ¢p41) is the number of ones in the segment bounded by sequence
positions ¢, and ¢, 1 —1 and O(¢y,, ¢p41) the number of zeros in that same seg-
ment. Note that f is a density with respect to the implicitly assumed reference

measure
o

> Lebyii(AN Xy,

N=0ceCxn

for measurable A, where Leby is the Lebesgue measure on Xy . := {(V, ¢, ) :
6 € (0,1)N+1} = (0,1)N+1,
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We here use the generalised Gibbs sampler in the context of simulated an-
nealing to determine the maximum of f, attained at the “best model” z*. How-
ever, the method can in principle provide substantially more information than
this, such as uncertainties about the number and positions of the change-points.

A Gibbs-like sampler for this problem may be constructed as follows. Two
broad classes of moves are allowed, labelled ‘I’ and ‘D’. The former considers the
insertion of a new change-point, and the latter the deletion of one. For a model x
with N change-points, there are N + 1 segments into which a new change-point
may be inserted, and N change-points that may be deleted. There are thus
2N +1 move types, which we label (0,1),...,(N,I) and (1, D),...,(N,D). We
therefore set Q(z) = {(n,I,z) : n =0,...,N} U{(n,D,z) : n=1,...,N}.
Note that ((n,D),z) and ((n,I),z) have been abbreviated to (n,I,z) and
(n, D, z). Note that the state space is U = Ugzex Q(z).

For the Q-step, define a transition matrix

ifi=(n,I),j=(n+1,D),n=0,...,N—1
ifi =(N,I), j=(0,1)

ifi=(n,D), 5=(n,I),n=1,...,N
otherwise.

Q:v((iax)v (.7737)) =

O = =

Thus Q; cycles through the 2N+1 move types available at z. A global transition
matrix ) can now be defined as in Section 2 for the Q-step. Note that the
density of the stationary distribution of @, is g,(u) = 1/(2N + 1) for all u €
Q(z).

For the R-step, define R(n, I, z) to be the set of models obtained by chang-
ing only a single segment of z, either by changing the Bernoulli parameter for
that segment, or by splitting it into two segments with separate Bernoulli pa-
rameters. For given n and z, we define r_(n, z) to be the set of models obtained
by changing the Bernoulli parameter for segment n, and 7., (n, z) to be the set
of models obtained by inserting a change-point at ¢, € {¢, +1,...,¢p41 — 1}
and setting two new Bernoulli parameters for the two segments thus created.
Thus,

cpny1—1

R(n,I,z) =r_(n,z) U e, (N, ),
cx=cnp+1

if  has fewer than N,,,, change-points and
R(n,I,z) =r_(n,z)

if  has Ny, change-points. Note that R(n,D,z) = R(n — 1,1,y) for some
y € X. (A suitable y may be obtained by deleting change-point n and choos-
ing a new Bernoulli parameter for the segment thus created.) Also note that
r_(n,z) = (0,1) and 7., (n,7) = (0,1)2.

Define i to be the measure on U with density g(i,z) = f(x) g, (7). Note that
this density is defined with respect to the implicitly assumed reference measure

EA) =D > Lebypi(ANUin,e),

N=0ceCy 1
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for measurable A, where
Uine={(i,z) €U:z = (N,c,0),0 € (0,1)N 1} = (0,1)V 1

The sum indexed by i is over the 2N +1 move types i = (0,1),...,(N,I),(1,D),
..., (N,D). This reference measure on U can be decomposed into reference
measures 7, on the sets r = R(n, I, z), given by

cpt+1—1
nr(A) = Leb(ANT_(n,z))+ Y Leby(AN7e (n,z)).
cx—=cCn+1

Thus, we may take the densities in the R-step proportional to g. In practice,
we compute the integral w_(n,z) of g over r_(n,z), and integrals we,(n,x)
of g over r., (n,z), for each ¢, € {c, +1,...,cn41 — 1}. These integrals can
be expressed in terms of gamma functions, and the normalisation constant is
their sum. As an example, consider w_(k,z), where z has fewer than N,
changepoints. We have

AN(L—1-N)! 1%
(k. x) = gLlenent1) (1 — g, )Oensenta)
ntk
1
> / QH(Ckack+1)(1 _ 9)@(Ck Ch+1) JO
0

When z has N < Ny, the R-step can be implemented as follows:
1. Calculate the weights w_(n,z) and we, (n,z) for ¢, = c,+1,...,¢p1 — 1.

2. Select an element of {—, ¢, +1,...,cy41 — 1} with probabilities propor-
tional to the weights calculated in Step 1.

3. If " is selected, update 6, by sampling from a beta distribution with
parameters o = [(cp,cpt1) + 1 and S = O(ep, cnt1) + 1. Otherwise, if
¢ is selected, insert a new change-point at c. and select new Bernoulli
parameters for the segments to the left and right of ¢, by sampling from
beta distributions with parameters (o = I(cp, ci) + 1,8 = O(cp, i) + 1)
and (o =I(cyent1) + 1,8 = O(cy, cnt1) + 1) respectively.

When z has Ny, change-points, the R-step is simply a conventional Gibbs
coordinate update in which a new value for 6, is generated by sampling from a
beta distribution with parameters a = I(cp, cpt1) + 1 and = O(cy, 1) + 1.

The sampler was tested on a long DNA sequence containing a region known
as the human major histocompatibility region. This sequence contains approx-
imately 3.5 million characters and is of interest here because it contains two
well-characterised isochores (see Oliver et al. [17]). The sampler just described
was used in the context of simulated annealing to determine the most probable
segmentation. The value of Nj,q, was 1000, and results were obtained with
A =10"""and A = 1072, Such small values of X impose a heavy penalty on
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Figure 9: Optimal segmentation with A\ = 107200

the addition of change-points, so a change-point will only appear if it is very
well supported by the data. The results are shown in Figure 8 and Figure 9.
The value plotted for each segment is the most probable Bernoulli parameter
for that segment, and may be interpreted as the GC proportion for that segment.
We note that the segmentation for the smaller value of A (Figure 9) is in excellent
agreement with that obtained by Oliver et al. [17]. We also note that the
segmentation for the larger value of A (Figure 8) contains many more change-
points. This indicates the existence of smaller segments with well-defined GC
content. We suggest that a hierarchical segmentation model would fit the data
better, with the traditional notion of an isochore corresponding to the highest

level (coarsest) segmentation. This is consistent with the findings of other
studies (eg. ITHGSC [9]).
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6 Concluding Remarks

The generalised Gibbs sampler enables Gibbs-like sampling in more general
spaces than is possible with the conventional Gibbs sampler. In particular, it
allows sampling from probability spaces in which there is uncertainty about not
only the model parameters, but also the model itself. The new sampler there-
fore enables the Gibbs sampling approach to be used for model determination,
evaluation and averaging.

The new sampler has turned out to be more than the generalised Gibbs
sampler it was originally intended to be, in that it encompasses as particular
cases all the Markov chain samplers mentioned in the introduction, including
the reversible jump MCMC. The examples considered here were deliberately
Gibbs-like, but it may be that many instances that do not resemble the Gibbs
sampler remain to be explored.
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