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Abstract

The variance minimization (VM) and cross-entropy (CE) methods are two

versatile adaptive importance sampling procedures that have been successfully

applied to a wide variety of difficult rare-event estimation problems. We

compare these two methods via various examples where the optimal VM

and CE importance densities can be obtained analytically. We find that in

the cases studied both VM and CE methods prescribe the same importance

sampling parameters, suggesting that the criterion of minimizing the cross-

entropy distance might be asymptotically identical to minimizing the variance

of the associated importance sampling estimator.
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1. Introduction

This article compares two adaptive importance sampling procedures, namely the

variance minimization (VM) and cross-entropy (CE) methods [11, 15], in the context

of rare-event simulation. Both algorithms aim to find an importance density that is

optimal in a well-defined sense, though the optimality criteria are different. Under the

VM method the optimal importance density is the one whose associated estimator has

minimum variance within a given parametric family. Although this minimum variance

criterion is obviously desirable, in practice the minimization problem required to locate

the optimal VM importance density is often intractable. Instead of directly minimizing

the variance of the estimator, the CE method seeks to locate the importance density

that is closest in Kullback-Leibler divergence or cross-entropy distance to the zero-

variance importance density: the conditional density given the rare event. The main

advantage of the CE method is that the optimization problem required to obtain the

optimal density often admits close-form solutions.

To compare these two related but distinct algorithms, we consider various explicit

examples where the optimal VM and CE importance densities can be obtained analyti-

cally. In all the examples considered, we find that the optimal VM and CE importance

densities are asymptotically identical. Although whether this result holds in general

or not is an open question, it suggests that the VM and CE criteria are very similar,

at least asymptotically. Put differently, the importance density that is the closest—

in cross-entropy distance— to the zero-variance importance density is also the one

whose associated estimator has the minimum asymptotic variance. The significance of

this is that since CE estimators are typically easier to obtain, this practical adaptive

importance sampling strategy is also optimal in the sense that it gives the minimum

variance importance sampling estimator. Furthermore, in situations where the VM or

CE optimization problems do not admit close-form solutions, the optimal parameters

need to be estimated via a multi-level procedure. We analyze how the variability in the

estimates affects the performance of the associated importance sampling estimator.

The rest of this article is organized as follows. In Section 2 we first introduce some

background material and then discuss the classic VM and CE methods as well as two

variants proposed recently. It is followed by three case studies: Section 3 considers
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the example of sum of exponential random variables, followed by the cases for Pareto

and Weibull random variables in Sections 4 and 5 respectively. We conclude with a

scenario in which the number of parameters is sent to infinity.

2. Adaptive Importance Sampling via VM and CE methods

We first introduce some standard notation and efficiency measures in the context

of rare-event simulation. We write a(t) ∼ b(t) to indicate that limt→∞ a(t)/b(t) = 1,

and Xi
iid
= f, i = 1, . . . , n to indicate that X1, . . . , Xn are independent and identically

distributed (iid) according to the density or distribution f . An unbiased estimator Z(γ)

for `(γ) is said to be logarithmically efficient, weakly efficient, or asymptotically optimal,

if limγ→∞ log EZ(γ)2/ log `(γ) = 2. This condition is equivalent to the requirement

that limγ→∞ EZ(γ)2/`(γ)2−ε = 0, for every ε > 0. The estimator is said to be strongly

efficient or have bounded relative error if supγ>0 EZ(γ)2/`(γ)2 < ∞. It is readily

observed that bounded relative error implies asymptotic optimality. These notions of

efficiency are standard in the literature; see, for example, [2] and [12].

We are interested in estimating the probability of the form

` = P(S(X) > γ) =

∫
1(S(x) > γ)f(x) dx, (1)

where S is some real-valued performance function, X is a vector of random variables

with probability density function (pdf) f , and γ is a sufficiently large constant such

that ` is small. Consider estimating ` via the importance sampling estimator

̂̀
IS =

1

N

N∑

i=1

1(S(Xi) > γ)
f(Xi)

g(Xi)
, (2)

where Xi
iid
= g, i = 1, . . . , N for some importance sampling pdf g for which g(x) = 0 ⇒

1(S(x) > γ)f(x) = 0 for all x. Although the estimator ̂̀
IS is consistent and unbiased

for any such g, its performance depends critically on the choice of g. Hence, we wish

to choose g so that the associated estimator is optimal in a well-defined sense. To

this end, consider a parametric family F = {f(x;v)} indexed by a parameter vector

v that contains the nominal (original) density f . Thus, we can write f(x) = f(x;u)

for some parameter vector u. For any given v the general term of the associated

importance sampling estimator is Z(v) = W (X;u,v)1(S(X) > γ), where W (x;u,v) is
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the likelihood ratio defined as W (x;u,v) = f(x;u)/f(x;v). Now, we wish to choose v

so that the associated importance sampling estimator has minimum variance within the

parametric family F . The minimizer vvm is referred to as the optimal VM parameter

vector. For any unbiased estimator ̂̀ of `, we have Var ̂̀ = Ề2 − `2. Therefore vvm

can be written as

vvm = argmin
v

EvZ(v)2 = argmin
v

EuZ(v) = argmin
v

log EuZ(v), (3)

where the expectation Ew is taken with respect to some density f(·;w). A related ap-

proach to locating a good importance density involves the Kullback-Leibler divergence,

or cross-entropy distance. To motivate the method, first note that the zero-variance

importance density for estimating ` is simply g∗(x) = `−1f(x;u)1(S(x) > γ)—the

conditional density given the rare event. Obviously g∗ cannot be used directly in

practice as it involves the unknown constant `. Nevertheless, this provides a practical

criterion to locate a good importance density. Specifically, if we choose the density

within F that is the closest to g∗ in the cross-entropy distance, then intuitively

the associated estimator should have reasonable performance. Let vce denote the

minimizer, which we refer to as the optimal CE parameter vector. It can be shown [15]

that solving the CE minimization problem is equivalent to finding

vce = argmax
v

∫
f(x;u)1(S(x) > γ) log f(x;v)dx. (4)

Although the optimal CE and VM parameter vectors can be obtained analytically for

a few specific cases, in general the optimization problems in (3) and (4) are difficult

to solve. Thus in practice one often needs to estimate vvm or vce via a multi-level

procedure, which we shall call multi-level VM or CE (see [11] for a more thorough

discussion).

Recent research has shown that in certain high-dimensional cases the estimates

for vvm and vce obtained from the multi-level procedures are not accurate, and as a

consequence the associated estimators perform poorly [8, 9, 13, 14]. A recent variant,

called the screening method, is introduced in [14] that aims to reduce the dimension of

the likelihood ratio, and is shown to perform better than the multi-level VM and CE

methods in various high-dimensional estimation problems. To motivate the method,

partition the parameter vector u into two subsets: u = (u0,u1), where the occurrence
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of the rare event {S(X) > γ} is substantially affected by u1 but not by u0. The vector

u1 is referred to as the bottleneck parameter. Now consider the parametric family

F0 = {f(x; ṽ)} indexed by ṽ, where ṽ = (u0,v1) and u0 is fixed—therefore, F0 is in

fact indexed by v1. The screening method proceeds in the same way as the multi-level

CE and VM methods, but instead of twisting the whole parameter vector u, one only

twists the bottleneck parameter u1.

Since F0 ⊂ F , the variance of the importance sampling estimator associated with

vvm is at least as small as the variance of the estimator associated with ṽvm simply by

definition. Paradoxically, however, the empirical findings in [14] suggest otherwise for

the situation where the parameters are estimated via a multilevel procedure. A possible

explanation is that the parameter vector obtained via the multi-level procedure, say,

v̂vm,T is not an accurate estimate for vvm. By reducing the dimension of the likelihood

ratio via the screening method, one can estimate ṽvm— the optimal VM parameter

vector within F0— more accurately. As a result, the importance density f(x; ̂̃vvm,T )

is “closer” to g∗ compared to f(x; v̂vm,T ), and thus the estimator associated with the

former density has a smaller variance than that of the latter.

Another improved variant is proposed in [8] and aims to estimate vce in one step

so as to circumvent likelihood degeneracy om the estimation procedure. Specifically,

instead of the multi-level procedure in the classic CE method, they propose estimating

vce by finding

v̂ce = argmax
v

M∑

j=1

log f(Xj ;v), (5)

where X1, . . . ,XM are draws from g∗ via, say, Markov chain Monte Carlo (MCMC)

methods. They demonstrate that the improved CE method does not only give substan-

tial improvement over the traditional approach but also works well in high-dimensional

estimation problems. In what follows, we consider various concrete examples where

one can derive asymptotic expressions for vvm and vce, and we show that they are

identical asymptotically. We then compute the asymptotic variances of the associated

estimators and investigate how they are affected by the estimation errors introduced

in the multi-level VM and CE approaches.
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3. Sum of Exponential Random Variables

Consider the estimation of ` = P(X1 + · · · + Xn > γ) via importance sampling,

where Xi
iid
= Exp(1), i = 1 . . . , n; that is, Xi has pdf f(x) = e−x, x > 0. Note that

` = e−γ
n−1∑

k=0

γk

k!
=

Γ(n, γ)

Γ(n)
, (6)

where Γ(n) = (n − 1)! and Γ(n, γ) is the value of the (upper) incomplete gamma

function at (n, γ). Suppose that we generate Xi
iid
= Exp(v−1), i = 1, . . . , n with pdf

f(x; v−1) = v−1Exp(−v−1x). It follows that the general term in the importance

sampling estimator is Z(v) = 1{X1 + · · ·+ Xn > γ}W (X; 1, v−1), where the likelihood

ratio is given by W (x; 1, v−1) = vn exp (−(1 − 1/v)
∑n

i=1 xi) . We first derive the

asymptotic expressions for the optimal VM and CE parameters and show that they

are the same.

Proposition 3.1. Let Xi
iid
= Exp(1), i = 1, . . . , n. To estimate ` = P(X1 + · · ·+ Xn >

γ) via importance sampling, suppose we generate Xi identically from the Exp(v−1)

distribution. Then the optimal VM and CE parameters are asymptotically the same.

In fact, we have vvm ∼ γ/n and vce ∼ γ/n.

Proof. To obtain the optimal VM parameter, we first derive an asymptotic expres-

sion for the second moment of the importance sampling estimator Z(v):

E1/vZ(v)2 = E1Z(v) =

∫
P

xi>γ

vne−(1−1/v)
Pn

i=1
xi

n∏

i=1

e−xidx

= vn(2 − 1/v)−n
P(Y1 + · · · + Yn > γ),

where Yi
iid
= Exp(2 − 1/v), i = 1, . . . , n for v > 1/2. Therefore, we have

E1/vZ(v)2 ∼
e−2γγn−1

(n − 1)!

vneγ/v

2 − 1/v
as γ → ∞ .

To obtain vvm, we differentiate log E1/vZ(v)2 with respect to v and solve the equation

(with the constraint that v > 1/2):

d

dv
log E1/vZ(v)2 ∼ n −

γ

v
−

1

2v − 1
= 0.

It follows that

vvm =
γ +

√
γ2 − nγ + (n + 1)2/4

2n
+

n + 1

4n
+ O(γ−1) ∼

γ

n
.
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For the optimal CE parameter, note that the solution of the maximization prob-

lem (4) is given by

vce =

∫
P

xi>γ e−
Pn

i=1
xi

∑n
i=1 xidx

n
∫

P

xi>γ e−
P

xidx
=

1

n
E[Y |Y > γ] ,

where Y
d
=Gamma(n, 1). Direct computation shows that E[Y |Y > γ] = Γ(n +

1, γ)/Γ(n, γ). Since Γ(n+1, γ) = n Γ(n, γ)+γne−γ and Γ(n, γ) = γn−1e−γ(1+O(γ−1)),

we have

E[Y |Y > γ] = n +
γne−γ

Γ(n, γ)
= n + γ(1 + O(γ−1)) .

It follows that vce = γ/n + 1 + O(γ−1) ∼ γ/n as γ → ∞. �

Therefore, by Proposition 3.1, the optimal VM parameter is asymptotically identical

to that given by the CE program when γ → ∞. We show in the next proposition that

either vvm or vce in fact gives an asymptotically optimal importance sampling estimator

for `. In addition, by the definition of vvm, no other importance sampling estimators

obtained by generating Xi identically from Exp(v−1) can be strongly efficient. In what

follows, we also investigate how the estimation error in obtaining vce affects the relative

error of the associated importance sampling estimator.

Proposition 3.2. Under the same assumptions as in Proposition 3.1, if one sets v =

γ/n + h for some constant h, then

E1/vZ(v)2/`2 =
en(n − 1)!

2nn
γ

„

1 +
2n − 1

2γ
+

n

4γ2
(2n2h2

− 2nh + 3n − 2) + O(γ−3)

«

(7)

as γ → ∞. In particular, the optimal VM/CE parameter gives an asymptotically

optimal estimator.

Proof. Let v = γ/n + h. By a similar computation as in Proposition 3.1, we have

E1/vZ(v)2 =
vn

(2 − 1/v)n

Γ(n, (2 − 1/v)γ)

Γ(n)

=
vne−2γeγ/v

(2 − 1/v)(n − 1)!
γn−1

(
1 +

n − 1

2 − 1/v
γ−1 + O(γ−2)

)
. (8)

Substituting v = γ/n + h and using the expression for ` in (6) gives (7). The final

statement in the proposition follows by setting v = γ/n ∼ vvm. �

It is worth noting that in (7) only the coefficient of the third order term 1/γ3

involves h, and that the magnitude of h does not affect the asymptotic efficiency of
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the importance sampling estimator. However, when the dimension of the estimation

problem n is large, h might have a substantial impact on the variance of the importance

sampling estimator for any finite γ. This explains why the multi-level CE estimator

generally works well in problems with light-tailed random variables, but sometimes

breaks down when the dimension of the problem gets large, e.g., see [8].

We now investigate what happens when the importance sampling parameter v is

obtained via a random procedure, such as in the multi-level VM or CE methods. Let

us denote the random parameter thus obtained by V , which is independent of the

{Zi} used in the importance sampling estimator. In the CE procedure the reference

parameter V is obtained as

V =

∑N
k=1 1{Sk > γ}Wk(w)Sk

n
∑N

k=1 1{Sk > γ}Wk(w)
, (9)

where Wk(w) = W (Xk; 1, 1/w) is the k-th likelihood ratio corresponding to a reference

parameter w obtained in the penultimate iteration, and Sk
iid
= Gamma(n, 1/w), k =

1, . . . , N . The parameter w is usually random as well — for example when obtained via

a CE procedure. Suppose, however, that w is some arbitrary fixed reference parameter.

The asymptotic distribution of V as a function of w is given in the next proposition.

Proposition 3.3. Under the same assumptions as in Proposition 3.1, the CE refer-

ence parameter V given in (9) is asymptotically normal as N → ∞ with mean vce and

variance σ2
γ,w/N . Furthermore, we have

σ2
γ,w ∼

(
1 −

1

n

)2
wn(n − 1)!

(2 − 1/w)
γ−n+3eγ/w as γ → ∞.

In particular,

σ2
γ, γ

n
∼ γ3 (n − 1)!

(
1 − 1

n

)2
en

2nn
.

Proof. First note that V given in (9) is a ratio estimator. By the delta method [7],

the asymptotic distribution is normal with mean

µ =
E1/w1{S > γ}W (w)S

nE1/w1{S > γ}W (w)
=

E11{S > γ}S

nE11{S > γ}
= vce

and variance σ2
γ,w/N , with

σ2
γ,w =

Var(A) − 2µ cov(A, B) + µ2Var(B)

`2
,
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where A = 1{S > γ}W (w)S, B = 1{S > γ}W (w), and S is Gamma(n, 1/w) dis-

tributed. The second moment of B is given in (8) with w substituted for v. The

expectation of A is simply E1/wA = E11{S > γ}S = ` vce. The second moment of A is

E1/wA2 =

∫
1(s > γ)wne−(1−1/w)ss2 1

Γ(n)
sn−1e−sds

=
n(n + 1)

(2 − 1/w)n+2

Γ(n + 2, (2 − 1/w)γ)

Γ(n + 2)
∼ γ2

EwB2.

Moreover, E1/wAB = E11{S > γ}W (w)S ∼ γEwB2. It follows, after some algebra,

that for n > 1

σ2
γ,w ∼

(
1 −

1

n

)2
wn(n − 1)!

(2 − 1/w)
γ−n+3eγ/w .

�

Note that the asymptotic variance of the CE reference parameter V is cubic in γ when

we set w = γ/n ∼ vvm. Therefore, even though vce gives an asymptotically optimal

estimator, when γ is sufficiently large, the estimation error in obtaining vce in the multi-

level CE procedure might be so substantial that it renders the resulting importance

sampling estimator unreliable.

4. Sum of Pareto Random Variables

We now consider estimating the tail probability of the sum of heavy-tailed random

variables. Specifically, we wish to estimate ` = P(X1 + · · · + Xn > γ) via importance

sampling, where Xi
iid
= Pareto(1, 1), i = 1, . . . , n. Since the Pareto distribution is

subexponential [2], we have ` ∼ n/(1 + γ) as γ → ∞. To estimate ` via importance

sampling, we consider the Pareto(α, 1) family indexed by α > 0 with pdf f(x; α) =

α(1 + x)α+1, x > 0. Now suppose that we generate Xi
iid
= Pareto(α, 1), i = 1, . . . , n.

The general term of the likelihood ratio is

W (x; 1, α) =

n∏

i=1

(1 + xi)
−2

α(1 + xi)(α−1)
= α−n

n∏

i=1

(1 + xi)
−(1−α),

and the corresponding importance sampling estimator is Z(α) = 1{X1 + · · · + Xn >

γ}W (X; 1, α). In the following proposition we show that the optimal VM and CE

parameters are the identical. In fact, we show αvm ∼ n/ log(1 + γ), which gives the

minimum variance estimator within the the class of importance sampling estimators
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obtained by generating Xi
iid
= Pareto(α, 1) for i = 1, . . . , n. Compare this with the

suggestions of [1] and [10].

Proposition 4.1. Let Xi
iid
= Pareto(1, 1), i = 1, . . . , n. Suppose we wish to estimate

` = P(X1 + · · · + Xn > γ) via importance sampling by generating Xi
iid
= Pareto(α, 1).

Then the optimal VM and CE parameters for α are asymptotically the same. In fact,

we have αvm ∼ n/ log(1 + γ).

Proof. Note that the optimal CE parameter for α is [4]: αce = (1+log(1+γ)/n)−1 ∼

n/ log(1+γ). To compute the optimal VM parameter, we first derive the second moment

of Z(α) with respect to the Pareto(α, 1) distribution:

EαZ(α)2 = E1Z(α) =

∫
P

xi>γ

α−n
n∏

i=1

(1 + xi)
−(1−α)(1 + xi)

−2dx

= (2α − α2)−n
P (Y1 + · · · + Yn > γ) ,

where Yi
iid
= Pareto(2 − α, 1), i = 1, . . . , n, provided that α < 2. Hence,

EαZ(α)2 ∼ (2α − α2)−nn(1 + γ)−(2−α). (10)

By a computation similar to that in Proposition 3.1, we have

αvm =

2
n log(1 + γ) + 2 −

√
4

n2 log2(1 + γ) + 4

2
n log(1 + γ)

+ O(log−2(1 + γ)) ∼
n

log(1 + γ)
.

Again, the optimal VM parameter is asymptotically identically to that given by the

CE program as γ → ∞. �

We next investigate how the choice of the parameter α affects the growth rate of

EαZ(α)2/`2. As a corollary to Proposition 4.1 we show that α = αce ∼ n/ log(1 + γ)

gives an importance sampling estimator that is asymptotically optimal. We note that

[3] provide a conditional Monte Carlo estimator that has bounded relative error for the

case of the sum of Pareto random variables. In addition, by utilizing a technique

based on Lyapunov-type inequalities first introduced in [5], [6] are able to derive

an importance sampling estimator that achieves bounded relative error for general

subexponential distributions.
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Proposition 4.2. Under the same assumptions as in Proposition 4.1, if one sets α =

n/ log(1 + γ) + h for some constant h such that 0 < α < 2, then

EαZ(α)2

`2
∼

en

n
γh

(
h(2 − h) +

2n

log(1 + γ)
−

n2

log2(1 + γ)

)
−n

as γ → ∞. (11)

In particular, the optimal VM/CE parameter gives an asymptotically optimal estimator.

Proof. By (10) and the fact that ` ∼ n/(1 + γ), we have

EαZ(α)2

`2
∼

1

n(2α − α2)n
(1 + γ)α.

Hence, if we set α = n/ log(1 + γ) + h, then (11) follows. As a result, for α = αce ∼

n/ log(1 + γ) we have

EαZ(α)2

`2
∼

en

n

(
2n

log(1 + γ)
−

n2

log2(1 + γ)

)
−n

as γ → ∞.

�

It is of interest to note that in contrast to the light-tailed case, the estimation

error h does increase the asymptotic variance of the importance sampling estimator.

Therefore, the problem of suboptimal VM/CE reference parameters is expected to be

more severe in the heavy-tailed case.

5. Sum of Weibull Random Variables

Consider the same estimation problem as in the last section, but now Xi
iid
= Weib(β, 1),

i = 1, . . . , n for 0 < β < 1; that is, Xi has pdf f(x; β) = βxβ−1e−xβ

. We wish to

estimate the tail probability ` via importance sampling by tilting the scale parameter.

That is, we locate the importance density within the parametric family Weib(β, θ) with

pdf f(x; β, θ) = θβxβ−1e−θxβ

, x > 0 indexed by θ > 0 while keeping β fixed. It follows

that the general term of the importance sampling estimator is Z(θ) = 1{X1+· · ·+Xn >

γ}W (X; 1, θ), with likelihood ratio W (x; 1, θ) = θ−n exp
(
−(1 − θ)

∑n
i=1 xβ

i

)
. Again,

for this sum of Weibull random variables case, the optimal VM and CE parameters

coincide asymptotically.

Proposition 5.1. Let Xi
iid
= Weib(β, 1), i = 1, . . . , n with 0 < β < 1. Suppose we

wish to estimate ` = P(X1 + · · · + Xn > γ) via importance sampling by generating

Xi
iid
= Weib(β, θ). Then the optimal VM and CE parameters for θ are asymptotically

identical. In fact, we have θvm ∼ n/γβ.
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Proof. First note that the optimal CE parameter for θ is [4]: θce = n/(n + γβ) ∼

n/γβ. Next we compute the optimal VM parameter as follows.

EθZ(θ)2 = E1Z(θ) =

∫
P

xi>γ

θ−ne−(1−θ)
Pn

i=1
xβ

i

n∏

i=1

βxβ−1
i e−xβ

i dx

= θ−n(2 − θ)−n
P(Y1 + · · · + Yn > γ),

where Yi
iid
= Weib(β, 2 − θ), provided that θ < 2. Since the Weib(β, θ) distribution is

subexponential for β < 1, we have

EθZ(θ)2 ∼
n

θn(2 − θ)n
P(Y1 > γ) =

n

θn(2 − θ)n
e−(2−θ)γβ

as γ → ∞. (12)

By a similar computation as in Proposition 3.1, it can be shown that

θvm =
n

γβ
+ 1 −

√

1 +
n2

γ2β
+ O(γ−(β+1)) ∼

n

γβ
as γ → ∞.

Therefore, the optimal CE and VM parameters for θ are identical asymptotically. �

The choice of θvm is to be compared with the suggestion in [10] to take θ = b/γβ,

where b > 0 is some arbitrary constant. Since the Weib(β, 1) distribution is subexpo-

nential for β < 1, it follows that ` ∼ ne−γβ

. Therefore, using the expression in (12), it

can be shown that if one chooses θ such that θγβ = c for some constant c, the associated

importance sampling estimator is asymptotically optimal. In particular, the choice

θ = θce ∼ θvm gives an asymptotically optimal importance sampling estimator, which

also has the minimum asymptotic variance within the class of importance sampling

estimators with importance densities under which Xi
iid
= Weib(β, θ), i = 1, . . . , n.

Proposition 5.2. Under the same assumptions as in Proposition 5.1, if one sets θ =

n/γβ, then

EθZ(θ)2/`2 ∼
en

2nnn+1
γnβ ,

i.e., the optimal VM/CE parameter gives an asymptotically optimal estimator.

Proof. Since the Weib(β, 1) distribution is subexponential for β < 1, we have ` ∼

ne−βγ . It follows from (12) that EθZ(θ)2/`2 ∼ n−1θ−n(2 − θ)−neθγβ

, as γ → ∞. The

desired result follows by letting θ = n/γβ.

6. Sum of Independent Non-identical Random Variables in the

Exponential Families

In this section we consider the rare-event regime where the number of random

variables n approaches infinity. To set the stage, suppose X1, X2, . . . is a sequence
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of independent but not necessarily identical random variables where each Xj belongs

to a one-parameter exponential family parameterized by the mean; that is, the density

of each Xj is given by

fj(x; uj) = exθ(uj)−ζ(θ(uj))hj(x). (13)

Let µn =
∑n

i=1 EXi and σ2
n =

∑n
i=1 Var Xi. We are interested in estimating the

probabilities `n = P(Sn > n b) as n → ∞, where Sn = X1 + · · ·+Xn and limn→∞(n b−

µn)/σn = ∞. We will show that the optimal CE parameters coincide with the ones

suggested by large deviation theory. More specifically, the CE method suggests twisting

the means of the random variables such that their sum equal to the threshold n b.

Proposition 6.1. Let X1, X2, . . . be a sequence of independent random variables such

that Xj belongs to a one-parameter exponential family parameterized by the mean with

pdf given in (13). Consider estimating `n = P(Sn > n b) as n → ∞ via the CE method

with importance density of the form
∏n

i=1 fi(xi; vi). Suppose limn→∞(n b − µn)/σn =

∞, where µn =
∑n

i=1 EXi and σ2
n =

∑n
i=1 Var Xi. Then the optimal CE parameters

v∗ce,1, v
∗

ce,2, . . . satisfy
n∑

i=1

v∗ce,i ∼ n b as n → ∞.

Proof. First note that to estimate `n, the optimal CE parameters v∗ce,i, i = 1, . . . , n

are given by [16, page 320]: v∗ce,i = E[Xi |Sn > n b]. Therefore,
∑n

i=1 v∗ce,i = E[Sn |Sn >

n b]. By the central limit theorem, (Sn − µn)/σn is asymptotically N(0, 1) distributed

as n → ∞. Therefore,

E[Sn |Sn > n b] ∼ µn +
ϕ

(
n b−µn

σn

)

1 − Φ
(

n b−µn

σn

)σn ∼ µn +
n b − µn

σn
σn = n b,

as n → ∞, where ϕ(·) and Φ(·) are respectively the pdf and cumulative distribution

function (cdf) of the standard normal distribution — hence, the desired result. �

7. Concluding Remarks and Future Research

We compare the VM and CE methods through various concrete examples and we

find that in the three examples considered the optimal VM and CE parameters are

asymptotically identical. It would be of considerable interest to determine under what
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conditions this is the case. Since CE estimators are typically easy to obtained, this

would provide a practical approach to locate the importance sampling estimator with

the minimum variance within a given parametric class. Moreover, it is worthwhile to

further study the impact of CE parameter estimation on the quality of the associated

importance sampling estimator.
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simulation for heavy-tailed distributions. Bernoulli 6, 303–322.

[2] Asmussen, S. and Glynn, P. W. (2007). Stochastic simulation: algorithms and

analysis. Springer-Verlag, New York.

[3] Asmussen, S. and Kroese, D. P. (2006). Improved algorithms for rare event

simulation with heavy tails. Advances in Applied Probability 38, 545–558.

[4] Asmussen, S., Rubinstein, R. Y. and Kroese, D. P. (2005). Heavy tails,

importance sampling and cross-entropy. Stochastic Models 21, 57–76.

[5] Blanchet, J. and Glynn, P. (2008). Efficient rare-event simulation for the

maximum of heavy-tailed random walks. Annals of Applied Probability 18, 1351–

1378.

[6] Blanchet, J. and Li, C. (2011). Efficient rare event simulation for heavy-tailed

compound sums. ACM Transactions on Modeling and Computer Simulation 21,

forthcoming.

[7] Casella, G. and Berger, R. L. (2001). Statistical Inference second ed.

Duxbury Press.



A Comparison of CE and VM Strategies 15

[8] Chan, J. C. C. and Kroese, D. P. (2010). Improved cross-entropy method for

estimation. Technical report. The University of Queensland Brisbane, Australia.

[9] Chan, J. C. C. and Kroese, D. P. (2010). Rare-event probability estimation

with conditional Monte Carlo. Annals of Operations Research. Forthcoming.

[10] Juneja, S. and Shahabuddin, P. (2002). Simulating heavy tailed processes

using delayed hazard rate twisting. ACM Transactions on Modeling and Computer

Simulation 12, 94–118.

[11] Kroese, D. P. (2010). The cross-entropy method. In Wiley Encyclopedia of

Operations Research and Management Science. Forthcoming.

[12] L’Ecuyer, P., Blanchet, J. H., Tuffin, B. and Glynn, P. W. (2010).

Asymptotic robustness of estimators in rare-event simulation. ACM Transactions

on Modeling and Computer Simulation 20, 1–41.

[13] Rubinstein, R. Y. (2009). The Gibbs cloner for combinatorial optimization,

counting and sampling. Methodology and Computing in Applied Probability 11,

491–549.

[14] Rubinstein, R. Y. and Glynn, P. W. (2009). How to deal with the curse of

dimensionality of likelihood ratios in Monte Carlo simulation. Stochastic Models

25, 547 – 568.

[15] Rubinstein, R. Y. and Kroese, D. P. (2004). The Cross-Entropy Method:

A Unified Approach to Combinatorial Optimization Monte-Carlo Simulation, and

Machine Learning. Springer-Verlag, New York.

[16] Rubinstein, R. Y. and Kroese, D. P. (2007). Simulation and the Monte Carlo

Method Second Edition. John Wiley & Sons, New York.


