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Abstract
Solving continuous Partially Observable Markov Decision Processes (POMDPs) is challenging, particularly for high-
dimensional continuous action spaces. To alleviate this difficulty, we propose a new sampling-based online POMDP
solver, called Adaptive Discretization using Voronoi Trees (ADVT). It uses Monte Carlo Tree Search in combination with
an adaptive discretization of the action space as well as optimistic optimization to efficiently sample high-dimensional
continuous action spaces and compute the best action to perform. Specifically, we adaptively discretize the action
space for each sampled belief using a hierarchical partition called Voronoi tree, which is a Binary Space Partitioning
that implicitly maintains the partition of a cell as the Voronoi diagram of two points sampled from the cell. ADVT uses the
estimated diameters of the cells to form an upper-confidence bound on the action value function within the cell, guiding
the Monte Carlo Tree Search expansion and further discretization of the action space. This enables ADVT to better
exploit local information with respect to the action value function, allowing faster identification of the most promising
regions in the action space, compared to existing solvers. Voronoi trees keep the cost of partitioning and estimating
the diameter of each cell low, even in high-dimensional spaces where many sampled points are required to cover
the space well. ADVT additionally handles continuous observation spaces, by adopting an observation progressive
widening strategy, along with a weighted particle representation of beliefs. Experimental results indicate that ADVT
scales substantially better to high-dimensional continuous action spaces, compared to state-of-the-art methods.
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1 Introduction
Planning in scenarios with non-deterministic action effects
and partial observability is an essential, yet challenging
problem for autonomous robots. The Partially Observable
Markov Decision Process (POMDP) (Kaelbling et al. 1998;
Sondik 1971) is a general principled framework for such
planning problems. POMDPs lift the planning problem
from the state space to the belief space — that is, the
set of all probability distributions over the state space.
By doing so, POMDPs enable robots to systematically
account for uncertainty caused by stochastic actions and
incomplete or noisy observations in computing the optimal
strategy. Although computing the optimal strategy exactly
is intractable in general (Papadimitriou and Tsitsiklis 1987),
the past two decades have seen a surge of sampling-based
POMDP solvers (reviewed in (Kurniawati 2022)) that trade
optimality with approximate optimality for computational
tractability, enabling POMDPs to become practical for a
variety of realistic robotics problems.

Despite these advances, POMDPs with continuous
state, action and observation spaces remain a challenge,
particularly for high-dimensional continuous action spaces.
Recent solvers for continuous-action POMDPs (Fischer and
Tas 2020; Mern et al. 2021; Seiler et al. 2015; Sunberg and
Kochenderfer 2018) are generally online —that is, planning
and execution are interleaved— and exploit Monte Carlo
Tree Search (MCTS) to find the best action among a finite
representative subset of the action space. MCTS interleaves

guided belief space sampling, value estimation and action
subset refinement to incrementally improve the possibility
that the selected subset of actions contains the best action.
They generally use UCB1 (Auer et al. 2002) to guide
belief space sampling and Monte Carlo backup for value
estimation, but differ in the action subset refinement.

Several approaches use the Progressive Widening strat-
egy (Couëtoux et al. 2011) to continuously add new ran-
domly sampled actions once current actions have been suf-
ficiently explored. Examples include POMCPOW (Sunberg
and Kochenderfer 2018) and IPFT (Fischer and Tas 2020).
More recent algorithms combine Progressive Widening with
more informed methods for adding new actions: VOM-
CPOW (Lim et al. 2021) uses Voronoi Optimistic Optimiza-
tion (Kim et al. 2020) and BOMCP (Mern et al. 2021)
uses Bayesian optimization. All of these solvers use UCT-
style simulations and Monte Carlo backups. An early line
of work, GPS-ABT (Seiler et al. 2015), takes a different
approach: It uses Generalized Pattern Search to iteratively
select an action subset that is more likely to contain the best
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action and add it to the set of candidate actions. GPS-ABT
uses UCT-style simulations and Bellman backup (following
the implementation of ABT (Hoerger et al. 2018; Klimenko
et al. 2014)), though the distinction between Monte Carlo
and Bellman backup was not clarified nor explored. All of
these solvers have been successful in finding good solutions
to POMDPs with continuous action spaces, though for a
relatively low (≤ 4) dimension.

To compute good strategies for POMDPs with high-
dimensional action spaces, we propose a new MCTS-
based online POMDP solver, called Adaptive Discretization
using Voronoi Trees (ADVT). ADVT is designed for
problems with continuous action spaces, while the state
and observation spaces can either be discrete or continuous.
ADVT contains three key ideas, as briefly described below.

The first key idea of ADVT is a new data structure
for action space discretization, called Voronoi tree. A
Voronoi tree represents a hierarchical partition of the
action space for a single sampled belief. It follows the
structure of a Binary Space Partitioning (BSP) tree, but
each partitioning hyper-plane is only implicitly maintained
and computed based on the Voronoi diagram of a pair
of sampled actions, which results in a partitioning that is
much more adaptive to the spatial locations of the sampled
actions, compared to state-of-the-art methods (Bubeck et al.
2011; Lim et al. 2021; Mansley et al. 2011; Sunberg and
Kochenderfer 2018; Valko et al. 2013). We additionally
maintain estimates of the diameters of the cells in the
Voronoi tree. These diameters are used in the other two key
ideas, namely, action selection and Voronoi tree refinement,
as described in the next two paragraphs. The hierarchical
structure of the Voronoi tree allows us to estimate the
diameters with an efficient sampling-based algorithm that
scales well to high-dimensional action spaces. Section 5
provides a more detailed description on the computational
and representational advantages of the Voronoi tree.

The second key idea of ADVT is the use of a cell-
diameter-aware upper-confidence bound on the values of
actions to guide action selection during planning. This
bound represents an upper-confidence bound on the values
of all actions within a cell, based on the estimated value
of the corresponding sampled action and the diameter of
the cell. Our bound is a generalization of a bound that
was developed for Lipschitz continuum-arm bandit problems
(Wang et al. 2020). It is motivated by the observation that
in many continuous action POMDPs for robotics problems,
the distance between two actions can often be used as
an indication of how similar their values are. Using this
observation, ADVT assumes that the action value for a belief
is Lipschitz continuous in the action space, which in turn
allows us to derive the upper bound. The upper bound helps
ADVT to exploit local information (i.e., the estimated value
of the representative action of a cell and the cell diameter)
with respect to the action value function and bias its search
towards the most promising regions of the action space.

The third key idea is a diameter-aware cell refinement
rule. We use the estimated diameters of the cells to help
ADVT decide if a cell needs further refinement: a larger
cell will be split into smaller ones after a small number of
simulations, while a smaller will require more simulations
before it is split. This helps ADVT to avoid an unnecessarily

small partitioning of non-promising regions in the action
space.

To further support ADVT in efficiently finding approx-
imately optimal actions, we use a stochastic version of
the Bellman backup (Klimenko et al. 2014) rather than
the typical Monte-Carlo backup to estimate the values of
sampled actions. Stochastic Bellman backups help ADVT
to backpropagate the value of good actions deep in the
search tree, instead of averaging them out. This strategy
of estimating the action values is particularly helpful for
problems with sparse rewards.

Aside from continuous action spaces, continuous obser-
vation spaces pose an additional challenge for MCTS-based
online POMDP solvers. Recent approaches such as POM-
CPOW and VOMCPOW apply Progressive Widening in the
observation space in conjunction with an explicit representa-
tion of the sampled beliefs via a set of weighted particles.
Due to its simplicity, we adopt POMCPOW’s strategy to
handle continuous observation spaces. This enables ADVT
to scale to problems with continuous state, action and obser-
vation spaces.

Experimental results on a variety of benchmark problems
with increasing dimension (up to 12-D) of the action
space and problems with continuous observation spaces
indicate that ADVT substantially outperforms state-of-the-
art methods (Lim et al. 2021; Sunberg and Kochenderfer
2018). Our C++ implementation of ADVT is available at
https://github.com/hoergems/ADVT.

This paper extends our previous work (Hoerger et al.
2022) in three ways: First is the extension of ADVT to
handle continuous observation spaces. Experimental results
on an additional POMDP benchmark problem demonstrate
the effectiveness of ADVT in handling purely continuous
POMDP problems. Second is a substantially expanded
discussion on the technical concepts of ADVT. And third
is an extended ablation study in which we investigate the
effectiveness of stochastic Bellman backups when applied to
two baseline solvers POMCPOW and VOMCPOW.

2 Background and Related Work
A POMDP provides a general mathematical framework
for sequential decision making under uncertainty. Formally,
it is an 8-tuple 〈S,A,O, T, Z,R, b0, γ〉. The robot is
initially in a hidden state s0 ∈ S. This uncertainty is
represented by an initial belief b0 ∈ B, which is a
probability distribution on the state space S, where B
is the set of all possible beliefs. At each step t ≥ 0,
the robot executes an action at ∈ A according to some
policy π. It transitions to a next state st+1 ∈ S according
to the transition model T (st, at, st+1) = p(st+1|st, at).
For discrete state spaces, T (st, at, st+1) represents a
probability mass function, whereas for continuous state
spaces, it represents a probability density function. The
robot does not know the state st+1 exactly, but perceives
an observation ot ∈ O according to the observation model
Z(st+1, at, ot) = p(ot|st+1, at).Z(st+1, at, ot) represents a
probability mass function for discrete observation spaces,
or a probability density function for continuous observation
spaces respectively. In addition, it receives an immediate
reward rt = R(st, at) ∈ R. The robot’s goal is to find a
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policy π that maximizes the expected total discounted reward
or the policy value

Vπ(b0) = E

[ ∞∑
t=0

γtrt

∣∣∣∣b0, π
]
, (1)

where the discount factor 0 < γ < 1 ensures that Vπ(b) is
finite and well-defined.

The robot’s decision space is the set Π of policies defined
as mappings from beliefs to actions. The POMDP solution is
then the optimal policy, denoted as π∗ and defined as

π∗ = arg max
π∈Π

Vπ(b). (2)

In designing solvers, it is often convenient to work with the
action value or Q-value

Q(b, a) = R(b, a) + γEo∈O[Vπ∗(b
o
a)|b], (3)

where R(b, a) =
∫
s∈S b(s)R(s, a)ds is the expected reward

of executing action a at belief b, while boa = τ(b, a, o) is the
updated robot’s belief estimate after it performs action a ∈ A
while at belief b, and subsequently perceives observation
o ∈ O. The optimal value function is then

V ∗(b) = max
a∈A

Q(b, a). (4)

A more elaborate explanation is available in (Kaelbling et al.
1998).

Belief trees are convenient data structures to find good
approximations to the optimal solutions via sampling-based
approaches, which has been shown to significantly improve
the scalability of POMDP solving (Kurniawati 2022). Each
node in a belief tree represents a sampled belief. It has
outgoing edges labelled by actions, and each action edge
is followed by outgoing edges labelled by observations
which lead to updated belief nodes. Naı̈vely, bottom-up
dynamic programming can be applied to a truncated belief
tree to obtain a near-optimal policy, but many scalable
POMDP solvers use more sophisticated sampling strategies
to construct a compact belief tree, from which a close-to-
optimal policy can be computed efficiently. ADVT uses such
a sampling-based approach and belief tree representation too.

Various efficient sampling-based offline and online
POMDP solvers have been developed for increasingly
complex discrete and continuous POMDPs in the last two
decades. Offline solvers (e.g., Bai et al. 2014; Kurniawati
et al. 2011, 2008; Pineau et al. 2003; Smith and Simmons
2005) compute an approximately optimal policy for all
beliefs first before deploying it for execution. In contrast,
online solvers (e.g., Kurniawati and Yadav 2013; Silver and
Veness 2010; Ye et al. 2017) aim to further scale to larger
and more complex problems by interleaving planning and
execution, and focusing on computing an optimal action
for only the current belief during planning. For scalability
purposes, ADVT follows the online solving approach.

Some online solvers have been designed for continuous
POMDPs. In addition to the general solvers discussed in
Section 1, some solvers (Agha-Mohammadi et al. 2011; Sun
et al. 2015; Van Den Berg et al. 2011, 2012) restrict beliefs
to be Gaussian and use Linear-Quadratic-Gaussian (LQG)
control (Lindquist 1973) to compute the best action. This

Algorithm 1 ADVT(Initial belief b0)

1: b = b0
2: T = initializeBeliefTree(b)
3: H(b) = Initialize Voronoi tree for belief b
4: isTerminal = False
5: while isTerminal is False do
6: while planning budget not exceeded do
7: (e, bc) = SAMPLEEPISODE(T , b) . Algorithm 2
8: for i = |e| − 1 to 1 do
9: (s, a, o, r) = ei

10: BACKUP(T , bc, a, r) . Algorithm 3
11: bc = Parent node of bc in T
12: REFINEVORONOITREE(H(bc), a) .

Algorithm 5
13: end for
14: end while
15: a∗ = arg maxa∈A(b) Q̂(b, a)
16: (o, isTerminal) = Execute a∗

17: b′ = τ(b, a∗, o)
18: b = b′

19: end while

strategy generally performs well in high-dimensional action
spaces. However, they tend to perform poorly in problems
with large uncertainties (Hoerger et al. 2020).

Last but not least, hierarchical rectangular partitions have
been commonly used to discretize action spaces when
solving continuous action bandits and MDPs (the fully
observed version of POMDPs), such as HOO (Bubeck
et al. 2011) and HOOT (Mansley et al. 2011). However,
the partitions used in these algorithms are typically
predefined, which are less adaptive than Voronoi-based
partitions constructed dynamically during the search. On
the other hand, Voronoi partitions have been proposed in
VOOT (Kim et al. 2020) and VOMCPOW (Lim et al. 2021).
However, their partitions are based on the Voronoi diagram
of all sampled actions, which makes the computation
of cell diameters and sampling relatively complex in
high-dimensional action spaces. ADVT is computationally
efficient, just like hierarchical rectangular partitions, and yet
adaptive, just like the Voronoi partitions, getting the best of
both worlds.

3 ADVT: Overview
In this paper, we consider a POMDP P =
〈S,A,O, T, Z,R, b0, γ〉, where the action space A is
continuous and embedded in a bounded metric space with
distance function d. Typically, we define the metric space
to be a D-dimensional bounded Euclidean space, though
ADVT can also be used with other types of bounded
metric spaces. We further consider the state space S and
observation space O to be either discrete or continuous.

ADVT assumes that the Q-value function is Lipschitz
continuous in the action space; that is, for any belief b ∈ B,
there exists a Lipschitz constant Lb such that for any actions
a, a′ ∈ A, we have |Q(b, a)−Q(b, a′)| ≤ Lb d(a, a′). Since
generally we do not know a tight Lipschitz constant, in the
implementation, ADVT uses the same Lipschitz constant L
for all beliefs in B, as discussed in Section 4.1.
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ADVT is an anytime online solver for POMDPs. It
interleaves belief space sampling and action space sampling
to find the best action to perform from the current belief
b ∈ B. The sampled beliefs are maintained in a belief tree,
denoted as T , while the sampled actions A(b) for a belief b
are maintained in a Voronoi tree, denoted as H(b), which is
adaptively refined. The Voronoi trees form part of the belief
tree in ADVT: they determine the sampled action branches
for the belief nodes.

Algorithm 1 presents the overall algorithm of ADVT, with
details in the sections below. At each planning step, ADVT
follows the MCTS approach of constructing a belief tree by
sampling a set of episodes (line 7 in Algorithm 1), starting
from the current belief. Details on the belief-tree construction
are provided in Section 4. After sampling an episode, the
estimated action values Q̂(b, a) along the sequence of actions
selected by the episode are updated using a backup operation
(line 10 in Algorithm 1). In addition, ADVT refines the
Voronoi tree H(b) as needed for each belief visited by the
episode (line 12 in Algorithm 1), as discussed in Section 5.
Once a planning budget is exceeded, ADVT selects an action
a∗ from the current belief acoording to

a∗ = arg max
a∈A(b)

Q̂(b, a), (5)

executes a∗ in the environment to obtain an observation o ∈
O, updates the current belief to b′ = τ(b, a∗, o) (line 15-17 in
Algorithm 1), and proceeds planning from the updated belief.
This process repeats until the robot enters a terminal state or
a maximum number of planning steps has been exceeded.

4 ADVT: Construction of the Belief Tree
The belief tree T is a tree whose nodes represent beliefs and
the edges are associated with action–observation pairs (a, o),
where a ∈ A and o ∈ O. A node b′ is a child of node b via
edge (a, o) if and only if b′ = τ(b, a, o).

To construct the belief tree T , ADVT interleaves the
iterative select-expand-simulate-backup operations used in
many MCTS algorithms with adaptive discretization. We
assume that we have access to a generative model G : S ×
A → S ×O × R that simulates the dynamics, observation
and reward models. In particular, for a given state s ∈
S and action a ∈ A, we have that (s′, o, r) = G(s, a),
where (s′, o) is distributed according to p(s′, o|s, a) =
T (s, a, s′)Z(s′, a, o), and r = R(s, a). At each iteration,
we first select a path starting from the root by sampling
an episode s0, a0, o0, r0, s1, a1, o1, r1, . . . as follows: We
first set the current node b as the root node, and sample
s0 from b. At each step i ≥ 0, we choose an action ai ∈
A(b) for b using an action selection strategy (discussed in
Section 4.1), execute ai from state si via the generative
model G to obtain a next state s′, an observation o
and the immediate reward ri. For problems with discrete
observation spaces, we set the episode’s next state si+1

and observation oi to si+1 = s′ and oi = o respectively. For
problems with continuous observation spaces, we select si+1

and oi according to an observation sampling strategy, as
discussed in Section 4.3. Finally, we update b to b’s child
node via (ai, oi). The process terminates when encountering
a terminal state or when the child node does not exist; in

Algorithm 2 SAMPLEEPISODE(Belief tree T , Belief node
bc)

1: Notations:H(b) = Voronoi tree associated with belief b;
A(b) = Set of candidate actions associated to the leaf-
nodes ofH(b)

2: e = Empty sequence of state-action-observation-reward
quadruples; b = bc; s = A random state sampled from b;
newBelief = False

3: while newBelief is False and s not terminal do
4: a = arg maxak∈A(b) U(b, ak) . eq. (6)
5: (b′, s′, o, r) = STEP(b, s, a) . Algorithm 4
6: Append (s, a, o, r) to e
7: N(b, a) = N(b, a) + 1;N(b) = N(b) + 1
8: if A(b′) = ∅ then
9: a = Sample uniformly from A

10: H(b′) = Initialize Voronoi tree for belief b′

11: Associate (a,A) with the root node ofH(b′)
12: N(b′) = 0; N(b′, a) = 0
13: newBelief = True
14: end if
15: s = s′

16: b = b′

17: end while
18: r = 0
19: if newBelief is True then
20: h = calculateRolloutHeuristic(s, b)
21: Initialize V̂ ∗(b) with h
22: end if
23: insert (s,−,−, r) to e
24: return (e, b)

the latter case, the tree is expanded by adding a new node,
and a rollout policy is simulated to provide an estimated
value for the new node. In either case, backup operations
are performed to update the estimated values for all actions
selected by the episode. In addition, new actions are added
to A(b) by refining the associated Voronoi tree H(b) as
needed for each encountered belief. Algorithm 2 presents the
pseudo-code for constructing T , while the backup operation
and refinement of H(b) are discussed in Section 4.2 and
Section 5, respectively.

4.1 Action Selection Strategy
In contrast to many existing online solvers, which use UCB1
to select the action to expand a node b of T , ADVT treats
the action selection problem as a continuum-arm bandit
problem. Specifically, it selects an action from the set of
candidate actions A(b) according to (Wang et al. 2020)

a∗ = arg max
a∈A(b)

U(b, a), with (6)

U(b, a) = Q̂(b, a) + C

√
logN(b)

N(b, a)
+ L diam(P ), (7)

where N(b) is the number of times node b has been visited
so far, N(b, a) is the number of times a has been selected at
b, P ⊆ A is the unique leaf cell containing a in H(b) (see
Section 5 for details on the Voronoi tree), and diam(P ) =
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supa,a′∈P d(a, a′) is the diameter of P with respect to
the distance metric d. The constant C is an exploration
constant, where larger values of C encourage exploration. In
case N(b, a) = 0, we set U(b, a) =∞. With the Lipschitz
continuity assumption, the value U(b, a) can be seen as
an upper-confidence bound for the maximum possible Q-
value maxa′∈P Q(b, a′) within P , as follows: Q̂(b, a) +

C
√

logN(b)
N(b,a) is the standard UCB1 bound for the Q-value

Q(b, a), and whenever this upper bounds Q(b, a), we
have U(b, a) ≥ Q(b, a′) for any a′ ∈ P , because U(b, a) ≥
Q(b, a) + L diam(P ) ≥ Q(b, a′), where the last inequality
holds due to the Lipschitz assumption. Since L is unknown,
we try different values of L in our experiments and choose
the best.

4.2 Backup

Algorithm 3 BACKUP(Belief tree T , Belief node b′, Action
a, Reward r)

1: b = Parent node of b′ in T
2: Q̂(b, a)← Q̂(b, a) + r+γV̂ ∗(b′)−Q̂(b,a)

N(b,a)

3: V̂ ∗(b) = maxa∈A(b) Q̂(b, a)

After sampling an episode e, ADVT updates the estimates
Q̂(b, a) as well as the statistics N(b) and N(b, a) along
the sequence of beliefs visited by the episode. To update
Q̂(b, a), we use a stochastic version of the Bellman backup
(Algorithm 3): Suppose r is the immediate reward sampled
by the episode after selecting a from b. We then update
Q̂(b, a) according to

Q̂(b, a)← Q̂(b, a) +
r + γV̂ ∗(b′)− Q̂i(b, a)

N(b, a)
, (8)

where b′ is the child of b in the belief tree T via edge (a, o);
i.e., the belief we arrived at after performing action a ∈ A
and perceiving observation o ∈ O from b, and Q̂i(b, a) is
the previous estimate of Q(b, a). This rule is in contrast to
POMCP, POMCPOW and VOMCPOW, where the Q-value
estimates are updated via Monte Carlo backup, i.e.,

Q̂(b, a)← Q̂(b, a) +
r + γV̂e(b

′)− Q̂i(b, a)

N(b, a)
, (9)

where V̂e(b′) is the the total discounted reward of episode e,
starting from belief b′.

Our update rule in eq. (8) is akin to the rule used in Q-
Learning (Watkins and Dayan 1992) and was implemented
in the ABT software (Hoerger et al. 2018; Klimenko et al.
2014), though never explicitly compared with Monte Carlo
backup.

The update rule in eq. (8) helps ADVT to focus its
search on promising parts of the belief tree, particularly for
problems where good rewards are sparse. For sparse-reward
problems, the values of good actions deep in the search tree
tend to get averaged out near the root when using Monte-
Carlo backups, thus their influence on the action values at
the current belief diminishes. In contrast, since stochastic
Bellman backups always backpropagates the current largest
action value for a visited belief, large action values deep in

the search tree have a larger influence on the action values
near the root. As we will demonstrate in the experiments,
using stochastic Bellman backups instead of Monte-Carlo
backups can lead to a significant performance benefit for
many POMDP problems.

4.3 Observation Sampling Strategy

Algorithm 4 STEP(Belief node b, State s, Action a)

1: (s′, o, r) = G(s, a) . Generative model
2: b′ = null
3: if O is discrete then
4: b′ = Child node of b via edge (a, o). (If no such child

exists, create one)
5: else
6: if |O(b, a)| > koN(b, a)αo then
7: o = Sample o uniformly at random from O(b, a)
8: end if
9: b′ = Child node of b via edge (a, o). (If no such child

exists, create one)
10: w = Z(s′, a, o)
11: b′ ∪ {(s′, w)}
12: s′ ∼ b′
13: r = R(s, a, s′)
14: end if
15: return (b′, s′, o, r)

During the episode-sampling process, when ADVT selects
an action a at a belief b according to eq. (6), we
must sample an observation to advance the search to the
next belief. ADVT uses different observation sampling
strategies, depending on whether the observation space
O is discrete or continuous. Algorithm 4 summarizes
ADVT’s observation sampling strategy for both discrete and
continuous observation spaces.

For discrete observation spaces, ADVT follows the
common strategy of sampling an observation from the
generative model, given the current state of the episode
and the selected action, and representing each sampled
observation via an observation edge in the search tree. Since
the number of possible observations is finite in the discrete
setting, this strategy typically works well for moderately
sized observation spaces.

For continuous observation spaces, however, the above
strategy is unsuitable. In this setting, each sampled
observation is generally unique, which leads to a possibly
infinite number of observations that need to be represented
in the search tree. As a consequence, we cannot expand
the search beyond the first step, resulting in policies that
are too myopic. Thus, to handle continuous observation
spaces, we adopt a strategy similar to the one used
by POMCPOW (Sunberg and Kochenderfer 2018) and
VOMCPOW (Lim et al. 2021). This strategy consists of two
components. The first component is to apply Progressive
Widening (Couëtoux et al. 2011) to limit the number of
sampled observation edges per action edge as a function of
N(b, a), i.e., the number of times we selected a from b. In
particular, let O(b, a) be the set of observation children of
action a at belief b. We sample a new observation as a child a
whenever |O(b, a)| satisfies |O(b, a)| ≤ koN(b, a)αo , where
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ko ≥ 0 and αo ≥ 0 are user defined parameters that control
the rate at which new observations are added to the tree.
If this condition is not satisfied, we uniformly sample
an observation from O(b, a). This enables ADVT to visit
sampled observation edges multiple times and expand the
search tree beyond one step. The second component is to use
an explicit representation of each sampled belief in the search
tree via a set of weighted particles {(si, wi)ni=1}, which
allows us to obtain state samples that are correctly distributed
according to the beliefs. When sampling an episode, suppose
ADVT selects action a from belief b, samples a next state s′

from the generative model and selects an observation o using
the strategy above. The weight corresponding to s′ is then
computed according to w = Z(s′, a, o) and (s′, w) is added
to particle set representing belief b′ whose parent is b via
the edge (a, o). To obtain a next state s′ that is distributed
according to b′, we resample s′ from b′ with a probability
proportional to the particle weights and continue from b′.

Note that in contrast to online POMDP solvers for
discrete observation spaces that only require a black-box
model to sample observations, we additionally require access
to the observation function Z(s, a, o). However, this is
a common assumption for solvers that are designed for
continuous observation spaces (Sunberg and Kochenderfer
2018; Hoerger and Kurniawati 2021).

Additionally, note that it is possible to use the
observation sampling strategy for continuous observation
spaces for discrete observation spaces. However, for
discrete observation spaces, this introduces unneccessary
computational overhead. As discussed above, the purpose
of explicit belief representations is to obain state samples
that are correctly distributed according to the beliefs. For
discrete observation spaces, this is achieved by sampling a
next state s′ according to the transition model T (s, a, s′)
and an observation o according to the observation model
Z(s′, a, o), and then use s′ as a sample from the belief
b′ = τ(b, a, o). Since the sampled observations are always
distributed according to Z(s′, a, o), s′ is a sample of b′. This
is in contrast to continuous observation spaces, where ADVT
samples observations from a distribution that is potentially
different to Z(s′, a, o) (line 7 in Algorithm 4). Therefore,
ADVT handles discrete and continuous observation spaces
separately and avoids the weighting an resampling step in
the discrete case, thus saving computation time.

5 ADVT: Construction and Refinement of
Voronoi Trees

Algorithm 5 REFINEVORONOITREE(Voronoi tree H(b),
Action a)

1: (a, P ) = leaf node of H(b) with its action component
being a

2: if CrN(b, a) ≥ 1/diam(P )2 then
3: a′ = sample from P
4: (P1, P2) = Child cells of P induced by a and a′

5: Compute diameters of P1 and P2

6: Add (a, P1) and (a′, P ′) as (a, P )’s children
7: end if

For each belief node b in the belief tree, its Voronoi tree
H(b) is a BSP tree forA. Each node inH(b) consists of a pair
(a, P ) with P ⊆ A and a ∈ P the representative action of P ,
and each non-leaf node is partitioned into two child nodes.
The partition of each cell in a Voronoi tree is a Voronoi
diagram for two actions sampled from the cell.

To construct H(b), ADVT first samples an action a0

uniformly at random from the action space A, and sets
the pair (a0,A) as the root of H(b). When ADVT decides
to expand a leaf node (a, P ), it first samples an action a′

uniformly at random from P ⊆ A. ADVT then implicitly
constructs the Voronoi diagram between a and a′ within the
cell P , splitting it into two regions: One is P1, representing
the set of all actions a′′ ∈ P for which the distance
d(a′′, a) ≤ d(a′′, a′), and the other is P2 = P\P1. The nodes
(a, P1) and (a′, P2) are then inserted as children of (a, P )
in H(b). The leaf nodes of H(b) form the partition of the
action space A used by belief b, while the finite action
subset A(b) ⊂ A used to find the best action from b is the
set of actions associated with the leaves of H(b). Figure 1
illustrates the relationship between a belief, the Voronoi tree
H(b) and the partition of A.

Voronoi trees have a number of representational and
computational advantages compared to existing partitioning
methods, such as hierarchical rectangular partitions (Bubeck
et al. 2011; Mansley et al. 2011) or Voronoi diagrams (Kim
et al. 2020; Lim et al. 2021). In contrast to hierarchical
rectangular partitions, Voronoi trees are much more adaptive
to the spatial locations of sampled actions, since the
geometries of the cells are induced by the sampled
actions. Furthermore, in contrast to Voronoi diagrams, the
hierarchical structure of Voronoi trees allows us to derive
efficient algorithms for estimating the diameters of the cells
(discussed in Section 5.2) and sampling new actions from
a cell (detailed in Section 5.3). For Voronoi diagrams the
diameter computation can be prohibitively expensive in the
context of online POMDP planning, since each sampled
action results in a re-partitioning of the action space; thus, the
diameters of the cells have to be re-computed from scratch.
Voronoi tress combinine a hierarchical representation of
the partition with an implicit construction of the cells
via sampled actions, thereby achieving both adaptivity and
computational efficiency.

The next section describes how ADVT decides which
node ofH(b) to expand.

5.1 Refining the Partition

ADVT decides how to refine the partitioning H(b) in two
steps. First, it selects a leaf node of H(b) to be refined next.
This step relies on the action selection strategy used for
expanding the belief tree T (Section 4.1). The selected leaf
node (a, P ) of H(b) is the unique leaf node with a chosen
according to eq. (6)

In the second step ADVT decides if the cell P should
indeed be refined. This decision is based on the quality of
the estimate Q̂(b, a), as reflected by the number of samples
used to estimate Q̂(b, a), and the variation of the Q-values
for the actions contained in P , as reflected by the diameter
of P . Specifically, ADVT refines the cell P only when the
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Figure 1. Illustration of the relation between a belief tree T (left), the Voronoi tree H(b) associated to belief b (middle) and the
partition of the action space induced by the Voronoi tree (right).

following criteria is satisfied:

CrN(b, a) ≥ 1

diam(P )2
, (10)

whereCr is an exploration constant.N(b, a), i.e., the number
of times that a has been selected at b, provides a rough
estimate on the quality of the Q̂(b, a) estimate, whereas
diam(P ) serves as a measure of variation of the Q-value
function within P due to the Lipschitz assumption. This
criterion, which is inspired by (Touati et al. 2020), limits the
growth of the finite set of candidate actionsA(b) and ensures
that a cell is only refined when its corresponding action has
been played sufficiently often. Larger Cr cause cells to be
refined earlier, thereby encouraging exploration.

Our refinement strategy is highly adaptive, in the sense
that we use local information (i.e., the diameters of the
cells, induced by the representative actions and the quality
of the Q-value estimates of the representative actions), to
influence the choice of the cell to be partitioned and when the
chosen cell is partitioned, and the geometries of our cells are
dependent on the sampled actions. This strategy is in contrast
to other hierarchical decompositions, such as those used in
HOO and HOOT, where the cell that corresponds to an action
is refined immediately after the action is selected for the
first time, which generally means the Q-value of an action is
estimated based only on a single play of the action, which is
grossly insufficient for our problem. In addition, our strategy
is more adaptive than VOMCPOW. For VOMCPOW, the
decision on when to refine the partition is solely based on the
number of times a belief has been visited and neither takes
the quality of the Q-value estimates, nor the diameters of
the Voronoi cells into account. Furthermore, VOMCPOW’s
refinement strategy is more global in a sense that each each
sampled action results in a different Voronoi diagram of the
action space. On the other hand, ADVT’s strategy is much
more local, since each refinement only affects a single cell.

5.2 Estimating the Voronoi Cell Diameters
ADVT uses the diameters of the cells in the action
selection strategy and the cell refinement rule, but efficiently
computing the diameters of the cells is computationally
challenging in high-dimensional spaces. We give an efficient
approximation algorithm for computing the Voronoi cell
diameters below.

Since the cells inH(b) are only implicitly defined, we use
a sampling-based approach to approximate a cell’s diameter.

Suppose we want to estimate the diameter of the cell P
corresponding to the node (a, P ) of the Voronoi tree H(b).
Then, we first sample a set of k boundary points AP (b) of
P , where k is a user defined parameter. In our experiments,
we typically set k to be between 20 and 50. To sample a
boundary point aP ∈ AP (b), we first sample a point α that
lies on the sphere centered at a with diameter diam(A) –
which can be easily computed for our benchmark problems –
uniformly at random. The point α lies either on the boundary
or outside of P . We then use the Bisection method (Burden
et al. 2016) with a and α as the initial end-points, until the
two end-points are less than a small threshold ε away from
each other, but one still lies inside P and the other outside
P . The point that lies inside P is then a boundary point
aP . The diameter of a bounding sphere that encloses all the
sampled boundary points in AP (b) (Welzl 1991) is then an
approximation of the diameter of P .

The above strategy to estimate the diameter of a cell
requires us to determine whether a sampled action a lies
inside or outside a cell P . Fortunately, a Voronoi tree allows
us to determine if a ∈ P easily. Observe that for each cell P ,
we have that P ⊆ PARENT(P ), where PARENT(P ) is the
cell associated to the parent node of P in the Voronoi tree. As
a result, a ∈ P implies that a ∈ PARENT(P ). Therefore, to
check whether a ∈ P , it is sufficent to check if a is contained
in all cells associated to the path in the Voronoi tree from
the root to P . Suppose ζ = ((a0, P0), (a1, P1), ..., (aL, PL))
is the sequence of nodes corresponding to a path in H(b)
and we want to check whether a ∈ PL. The point a is inside
PL if, for each (ai, Pi) ∈ ζ, we have that d(a, ai) ≤ d(a, a′i),
where a′i is the inducing point of the cell corresponding to the
sibling node of (ai, Pi), and d(·, ·) is the distance function on
the action space. If, this condition is not satisfied, a is outside
PL, i.e., a /∈ PL.

To further increase the computational efficiency of
our diameter estimator, we re-use the sampled boundary
points AP (b) when ADVT decides to split P into two
child cells P ′ and P ′′. Suppose the diameter of P
was estimated using k boundary points. Since every
point in AP (b) lies either on the boundary of P ′

or P ′′, we divide AP (b) into AP ′(b) and AP ′′(b),
such that AP ′(b) = {a ∈ AP (b) | d(a, a′) ≤ d(a, a′′)} and
AP ′′(b) = AP (b)\AP ′(b), where a′ and a′′ are the inducing
points of P ′ and P ′′ respectively. This will leave us with
|AP ′(b)| ≤ k and |AP ′′(b)| ≤ k boundary points for cell P ′

and P ′′ respectively. For both AP ′(b) and AP ′′(b) we then
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sample k − |AP ′(b)| and k − |AP ′′(b)| additional boundary
points using the method above such that |AP ′(b)| = k and
|AP ′′(b)| = k. Using this method, we only need to sample
k new boundary points instead of 2k when ADVT decides
to split the cell P , leading to increased computational
efficiency.

5.3 Sampling from the Voronoi Cells
To sample an action that is approximately uniformly
distributed in a cell P , we use a simple Hit & Run
approach (Smith 1984) that performs a random walk within
P . Suppose P is the cell corresponding to the node (a, P ) of
the Voronoi tree H(b). We first sample an action aP on the
boundary of P using the method described in Section 5.2.
Subsequently, we take a random step from a in the direction
towards aP , resulting in a new action a′ ∈ P . We then use
a′ as the starting point, and iteratively perform this process
for m steps, which gives us a point that is approximately
uniformly distributed in P .

6 Experiments and Results

We evaluated ADVT on 5 robotics tasks, formulated as
continuous-action POMDPs. The following section provides
details regarding the tasks, while Table 1 summarizes
the state, action and observation spaces for each problem
scenario.

6.1 Problem Scenarios
6.1.1 Pushbox Pushbox is a scalable motion planning
problem proposed in (Seiler et al. 2015) which is motivated
by air hockey. A disk-shaped robot (blue disk in Figure 2(a))
has to push a disk-shape puck (red disk in Figure 2(a)) into
a goal region (green circle in Figure 2(a)) by bumping into
it, while avoiding any collision of itself and the puck with
a boundary region (black region if Figure 2(a)). The robot
receives a reward of 1, 000 when the puck is pushed into the
goal region, while it receives a penalty of−1, 000 if the robot
or the puck collides with the boundary region. Additionally,
the robot receives a penalty of −10 for every step. The
robot can move freely in the environment by choosing a
displacement vector. Upon bumping into the puck, the puck
is pushed away and the motion of the puck is affected by
noise. We consider two variants of the problem, Pushbox2D
and Pushbox3D that differ in the dimensionality of the state
and action spaces. For the Pushbox2D problem (illustrated
in Figure 2(a)), the robot and the puck operate on a 2D-
plane, whereas for Pushbox3D, both the robot and the puck
operate inside a 3D-environment. Let us first describe the
Pushbox2D variant. The state space consists of the xy-
locations of both the robot and the puck, i.e., S = R4,
while the action space is defined by A = [−1, 1]× [−1, 1].
If the robot is not in contact with the puck during a move,
the state evolves deterministically according to f(s, a) =
(xr + ax, yr + ay, xp, yp)

T , where (xr, yr) and (xp, yp) are
the xy-coordinates the robot and the puck respectively,
corresponding to state s, and (ax, ay) is the displacement
vector corresponding to action a. In particular, if the robot
bumps into the puck, the next position (x′p, y

′
p) of the puck is

computed as(
x′p
y′p

)
=

(
xp
yp

)
+ 5rs

((
ax
ax

)
· ~n
)(

~n+

(
rx
ry

))
, (11)

where the “ · ” operator denotes the dot product, ~n is the unit
directional vector from the center of the robot to the center of
the puck at the time of contact, and rs is a random variable
drawn from a truncated Gaussian distribution N(µ, σ2, l, u),
which is the Gaussian distribution N(µ, σ2) truncated to the
interval [l, u]. For our experiments, we used µ = 1.0, σ =
0.1, l = µ− σ = 0.9 and u = µ+ σ = 1.1. The variables
rx and ry are random variables drawn from a truncated
Gaussian distribution N(0.0, 0.12,−0.1, 0.1).

The initial position position of the robot is known and
is set to xr = 5.5 and yr = 9.5 respectively. The initial
puck position, however, is uncertain. Its initial xp and yp
coordinates are drawn from a truncated Gaussian distribution
N(5.5, 2.02, 3.5, 7.5), but the robot has access to a noisy
bearing sensor to localize the puck and a noise-free collision
sensor which detects contacts between the robot and the
puck. In particular, given a state s ∈ S, an observation
(oc, ob) consists of a binary component oc which indicates
whether or not a contact between the robot and the puck
occured, and a discretized bearing component ob calculated
as

ob = floor

(
atan2(yo − yr, xo − xr) + ro

π/6

)
, (12)

where xr, yr and xo, yo are the xy-coordinates of the robot
and the puck corresponding to the state s, and ro is a
random angle (expressed in radians) drawn from a truncated
Gaussian distribution N(0.0, ( π18 )2,− π

18 ,
π
18 ). Due to the

floor operator in eq. (12), the number of discretized bearing
observation is 12, thus the observation space consists of 24
unique observations.

Pushbox3D is a straightforward extension of the
Pushbox2D problem: The state space is defined as S =
R6, consisting of the xyz-locations of the robot and the
puck. The action space is A = [−1, 1]× [−1, 1]× [−1, 1],
where each a ∈ A describes a 3D-displacement vector of
the robot. The transition dynamics are defined similarly to
Pushbox2D, except that all quantities are computed in 3D.
The observation space is extended with an additional bearing
observation, computed according to eq. (12), but with the
term atan2(yo − yr, xo − xr) being replaced by atan2(zo −
zr, yo − yr), where zr and zo are the z-coordinates of the
robot and the puck respectively. The reward function is the
same as in the Pushbox2D problem.

For both variants of the problem the discount factor is γ =
0.95 and a run is considered successful if the robot manages
to push the puck into a goal region within 50 steps, while
avoiding collisions of itself and the puck with the boundary
region.

6.1.2 Parking An autonomous vehicle with deterministic
dynamics operates in a 3D-environment populated by
obstacles, shown in Figure 2(b). The goal of the vehicle
is to safely navigate to a goal area located between the
obstacles while avoiding any collision with the obstacles
(black regions in Figure 2(b)). The vehicle receives a reward
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(a) (b) (c) (d) (e)

Figure 2. Illustrations of (a) the Pushbox2D, (b) the Parking2D, (c) the SensorPlacement-8, (d) the VDP-Tag and (e) the
LunarLander problems. Goal regions in are marked as green circles or a green flag.

Table 1. Summary of the state, action and observation spaces for each problem scenario.

S A O
Pushbox2D R4 [−1, 1]2 24 observations
Pushbox3D R6 [−1, 1]3 288 observations
Parking2D R4 [−π2 ,

π
2 ]× [−8, 8] 4 observations

Parking3D R5 [−π2 ,
π
2 ]× [−8, 8]× [− 7

2 ,
7
2 ] 4 observations

SensorPlacement-D RD RD 4 observations
VDP-Tag R4 [0, 2π)× {0, 1} R8

LunarLander R6 R+ × R R3

of 100 when reaching the goal area, while a collisions with
the obstaces are penalized by −100. Attionally, the vehicle
receives a penalty of −1 for every step. We consider two
variants of the problem, Parking2D and Parking3D. For
Parking2D, the vehicle navigates on a 2D-plane, whereas
for Parking3D, the vehicle operates in 3D-space. We first
describe the Parking2D variant: The state space is S = R4

and consists of the xy-position of the vehicle on the plane,
its orientation θ and its velocity v. The vehicle is controlled
via a steering wheel angle aθ and acceleration av , i.e.,
the action space is A = Ω× Φ, where Ω = [−π2 ,

π
2 ] is the

continuous set of steering wheel angles and Φ = [−8, 8] is
the continuous set of accelerations. We assume that for a
given state s ∈ S and action a ∈ A, the state of the vehicle
evolves acoording to the following deterministic second-
order discrete-time dynamics model:

f(x, y, θ, v, aθ, av) =


x+ v cos(θ)∆
y + v sin(θ)∆
θ + aθ∆
v + av∆

 , (13)

where x, y, θ and v are the 2D-position, orientation and
velocity corresponding to state s, ∆ = 1

3s is a fixed control
duration, and aθ, av are the steering wheel angle and
acceleration components of the action. To compute the next
state s′, given s and a, we numerically integrate eq. (13) for
3 steps.

There are three distinct areas in the environment, each
consisting of a different type of terrain (colored areas
in Figure 2(b)). Upon traversal, the vehicle receives an
observation regarding the terrain type, which is only correct
70% of the time due to sensor noise. If the vehicle is outside
the terrains, we assume that it deterministically receives a
NULL observation. Initially the vehicle starts near one of
three possible starting locations (red areas in Figure 2(b))
with equal probability. The exact initial position of the
vehicle along the horizontal y-axis is then drawn uniformly
from U [−0.175, 0.175] around the starting location. For

Parking3D the vehicle operates in the full 3D space, and
we have additional continuous state and action components
that model the vehicles elevation and change in elevation
respectively. We assume that the elevation of the vehicle
changes according to z + ∆ah, where z ∈ R is the elevation
component of the state, and ah ∈ [− 7

2 ,
7
2 ] is the elevation-

change component of the action. The discount factor for both
variants is γ = 0.95 and a run is considered successful if the
vehicle enters the goal area within 50 steps while avoiding
collisions with the obstacles.

Two properties make this problem challenging. First is the
multi-modal beliefs which require the vehicle to traverse the
different terrains for a sufficient amount of time to localize
itself before attempting to reach the goal. Second, due to
the narrow passage that leads to the goal, small perturbations
from the optimal action can quickly result in collisions with
the obstacle. As a consequence, good rewards are sparse and
a POMDP solver must discover them quickly in order to
compute a near-optimal strategy.

6.1.3 SensorPlacement We propose a scalable motion
planning under uncertainty problem in which a D-DOF
manipulator with D revolute joints operates in muddy water
inside a 3D environment. The robot is located in front
of a marine structure, represented as four distinct walls,
and its task is to mount a sensor at a particular goal
area between the walls (rewarded with 1,000) while having
imperfect information regarding its exact joint configuration.
To localize itself, the robot’s end-effector is equipped with a
touch sensor. Upon touching a wall, it provides noise-free
information regarding which wall is being touched, while
we assume that the sensor deterministically outputs a NULL
observation in a contact-free state. However, in order to avoid
damage, the robot must avoid collisions (penalized by−500)
between any of its other links and the walls. The state space
of the robot consists of the set of joint-angles for each joint.
The action space isA ⊂ RD, where a ∈ A is a vector of joint
velocities. Due to underwater currents, the robot is subject to
random control errors and the joint-angles corresponding to
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a state evolve according to

θ′ = θ + a+ r, (14)

where θ is the set of joint angles corresponding to the current
state, and r is a random vector sampled from a multivariate
Gaussian distribution N(0, σ2I), where I is the identity
matrix of size D, and σ2 = 10−3. Initially the robot is
uncertain regarding its exact joint angle configuration. We
assume that the initial joint angles are distributed uniformly
according to U [θl, θu], where θl = θ0 − h and θu = θ0 +
h, with θ0 corresponding to the configuration where all
joint angles are zero, except for the second and third joint
whose joint angles are −1.57 and 1.57 respectively and
h = (0.1, . . . , 0.1) ∈ RD (units are in radians). We consider
four variants of the problem, denoted as SensorPlacement-D,
withD ∈ {6, 8, 10, 12}, that differ in the degrees-of-freedom
(number of revolute joints and thus the dimensionality of
the action space) of the manipulator. Figure 2(c) illustrates
the SensorPlacement-8 problem, where the colored areas
represent the walls and the green sphere represents the
goal area. The discount factor is γ = 0.95 and a run is
considered successful if the manipulator mounts the sensor
within 50 steps while avoiding collisions with the walls. To
successfully mount the sensor at the target location, the robot
must use its touch sensor to carefully reduce uncertainty
regarding its configuration. This is challenging, since a
slight variation in the performed actions can quickly lead to
collisions with the walls.

6.1.4 Van Der Pol Tag Van Der Pol Tag (VDP-Tag)
is a benchmark problem introduced in (Sunberg and
Kochenderfer 2018) in which an agent (blue particle in
Figure 2(d)) operates in a 2D-environment. The goal is to tag
a moving target (red particle in Figure 2(d)) whose motion
is described by the Van Der Pol differential equation and
disturbed by Gaussian noise with standard deviation σ =
0.05. Initially, the position of the target is unknown. The
agent travels at a constant speed but can pick its direction
of travel at each step and whether to activate a costly range
sensor, i.e., the action space is A = [0, 2π)× {0, 1}, where
the first component is the direction of travel and the second
component is the activation/deactivation of the range sensor.
The robot receives observations from its range sensor via 8
beams (i.e., O = R8) that measure the agent’s distance to
the target if the target is within the beam’s range. These
measurements are more accurate when the range sensor is
active. While the target moves freely in the environment, the
agent’s movements are restricted by four obstacles in the
environment, shown in Figure 2(d). Catching the target is
reward by 100, while activating the range sensor is penalized
by −5. Additionally, each step incurs a penalty of −1. The
discount factor is γ = 0.95 and a run is considered successful
of the agent catches the target within 50 steps. More details
of the VDP-Tag problem can be found in (Sunberg and
Kochenderfer 2018).

Note that in this problem, the action space consists of
two disconnected components, namely [0, 2π)× {0} and
[0, 2π)× {1}. To allow a Voronoi tree H(b) in ADVT to
cover the entire action space, we ensure that once the root
node of H(b) is split, we set the range sensor component
of the representative actions of the two resulting child cells

to 0 and 1 respectively, such that one child cell covers the
component [0, 2π)× {0}, and the other child cell covers the
component [0, 2π)× {1}.

6.1.5 LunarLander This problem is a partially observable
adaptation of Atari’s Lunar Lander game. For this problem,
the state, action and observation spaces are all continuous.
The objective is to control a lander vehicle to safely
land at a target zone located on the moon’s surface.
The lander operates on a xy-plane and its state is a
6D-vector (x, y, θ, ẋ, ẏ, θ̇), where x ∈ R and y ∈ R are
the horizontal and vertical positions of the lander and
θ ∈ R its orientation. ẋ ∈ R, ẏ ∈ R and θ̇ ∈ R represent
the lander’s horizontal, vertical and angular velocities
respectively. The action space is A = Λ×Ψ, where Λ =
R+ is the set of linear accelerations along the lander’s
vertical axis, and Ψ = R is the set of angular accelerations
about the lander’s geometric center. The initial belief of
the lander is a multivariate Gaussian distribution with
mean µ = (0, 10, 0, 0,−10, 0)T and covariance matrix Σ =
diag(1.52, 1.02, 0.12, 02, 0.52, 0.12).

We assume that the state of the lander evolves according to
the following second-order discrete-time stochastic model:

f(x, y, θ, ẋ, ẏ, θ̇, λ̃, ψ̃) =



x+ ẋ∆
y + ẏ∆

θ + θ̇∆

ẋ+ (−λ̃ sin(θ)M)∆

ẏ + (λ̃ cos(θ)M −G)∆

θ̇ +Hψ̃∆

 ,
(15)

where λ̃ = λ+ eλ and ψ̃ = ψ + eψ , with λ and ψ being
the vertical and angular accelerations corresponding to
the action, and eλ and eψ are random control errors
drawn from zero-mean Gaussian distributions with standard
deviations σλ = 1× 10−4 and σψ = 5× 10−2 respectively.
The variable ∆ = 0.2s is a constant step size, whereas
F = 40 and H = 2 are motor constants. The variable
G = −9.81m/s2 is a constant describing the gravitational
acceleration along the y-axis. To obtain the next state, given
the current state and an action, we numerically integrate the
system in eq. (15) for 5 steps.

The lander perceives information regarding its state via
three noisy sensors: The first two sensors measure the
lander’s horizontal and angular velocities, whereas the third
sensor measures the distance to the ground along the lander’s
vertical axis (dashed line in Figure 2(e)). The readings of all
three sensors are disturbed by standard-Gaussian noise.

The reward function is defined by

rt =


−1000, if θ ≥ 0.5 or yt < 0

100− |xt| − |θt| − ẏ2
t , if yt ≤ 0.3

−1, otherwise.
(16)

The first term in eq. (16) encourages the lander to prevent
dangerous angles and crashing into the ground. The second
term encourages the lander to safely land at x = 0 with an
upright angle and a small vertical velocity. The third term
encourages the lander to land as quickly as possible. The
discount factor is γ = 0.95 and a run is considered successful
if the lander’s vertical position reaches y ≤ 0.3 within 50
steps, without crashing into the ground (y < 0).
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6.2 Experimental Setup
The purpose of our experiments is three-fold: First is
to evaluate ADVT and compare it with two state-of-
the-art online POMDP solvers for continuous actions
spaces, POMCPOW (Sunberg and Kochenderfer 2018)
and VOMCPOW (Lim et al. 2021). The results of those
experiments are discussed in Section 6.3.1.

Second is to investigate the importance of the different
components of ADVT, specifically the Voronoi tree-based
partitioning, the cell-diameter-aware exploration term in
eq. (7), and the stochastic Bellman backups. For this purpose,
we implemented the original ADVT and three modifications.
First is ADVT-R, which replaces the Voronoi decomposition
of ADVT with a simple rectangular-based method: Each
cell in the partition is a hyper-rectangle that is subdivided
by cutting it in the middle along the longest side (with
ties broken arbitrarily). The second variant is ADVT (L=0),
which is ADVT where eq. (7) reduces to the standard UCB1
bound. For the third variant, ADVT-MC, we replace the
stochastic Bellman backup in eq. (8) with the Monte Carlo
backup in eq. (9), as used by POMCPOW and VOMCPOW.
The results for this study are discussed in Section 6.3.2

Third is to test the effects of two algorithmic components
of ADVT when applied to the baselines VOMCPOW and
POMCPOW: In the original implementation of VOMCPOW
and POMCPOW provided by the authors, the policy is
recomputed after every planning step using a new search tree.
In contrast, for discrete observation spaces, ADVT applies
ABT’s (Kurniawati and Yadav 2013) strategy that re-uses
the partial search tree (starting from the updated belief)
constructed in the previous planning steps and improves the
policy within the partial search tree. Therefore, for problems
with discrete observation spaces, we also tested modified
versions of VOMCPOW and POMCPOW, where we follow
ADVT’s strategy of re-using the partial search trees. Note
that for the VDP-Tag and LunarLander problems, we did
not test the variants of VOMCPOW and POMCPOW that
re-use partial search trees, since each observation that the
agent perceives from the environment leads to a new search
tree due to the continuous observation spaces. Moreover,
to test the effects of ADVT’s stochastic Bellman backup
strategy further, we implemented variants of VOMCPOW
and POMCPOW to use stochastic Bellman backups instead
of Monte Carlo backups. The results are discussed in
Section 6.3.3.

To approximately determine the best parameters for each
solver and problem, we ran a set of systematic preliminary
trials by performing a grid-search over the parameter space.
For each solver and problem, we used the best parameters
and ran 1,000 simulation runs, with a fixed planning time of
1s CPU time for each solver and scenario. Each tested solver
and the scenarios were implemented in C++ using the OPPT-
framework (Hoerger et al. 2018). All simulations were run
single-threaded on an Intel Xeon Platinum 8274 CPU with
3.2GHz and 4GB of memory.

6.3 Results
6.3.1 Comparison with State-of-the-Art Methods Table 2
shows the average total discounted rewards of all tested
solvers on the Pushbox, Parking, VDP-Tag and LunarLander

problems, while Figure 3 shows the results for the Sensor-
Placement problems. Detailed results for the SensorPlace-
ment problems are presented in Table 4 while results on the
success rates of the tested solvers are shown in Table 5 and
Table 6.

ADVT generally outperforms all other methods, except for
VDP-Tag, where VOMCPOW performs better. Interestingly,
as we will see in Section 6.3.2, the variant of ADVT that
uses Monte-Carlo backups instead of stochastic Bellman
backups (ADVT-MC) outperforms all other methods in this
problem, which supports ADVT’s effectiveness in handling
continuous actions. The results for the SensorPlacement
problems indicate that ADVT scales well to higher-
dimensional action spaces. Additionally, the results on the
VDP-Tag and LunarLander problems indicate that ADVT is
capable of handling continuous observation spaces well.

ADVT performs well in terms of the success rate, too
(Table 5 and Table 6). ADVT maintains more than 90% suc-
cess rate in the Pushbox, Parking, VDP-Tag and LunarLan-
der problems. In the Parking3D problem, VOMCPOW’s and
POMCPOW’s success rate can be as low as ∼ 30% and
12.5%. Similarly, in the SensorPlacement problems ADVT
achieves a higher success rate compared to VOMCPOW
and POMCPOW. While in the SensorPlacement-6 problem,
the gap between ADVT and VOMCPOW is relatively small
(∼ 98% for ADVT and ∼ 92% for VOMCPOW), the gap
increases as the dimensionality of the action space increases.
In the SensorPlacement-12 problem, ADVT achieves a suc-
cess rate of > 72%, while VOMCPOW’s success rate drops
to < 60%. POMCPOW achieves a success rate of < 74%
in the SensorPlacement-6 problem, while only achieving a
success rate of < 32% in the SensorPlacement-12 problem.

6.3.2 Understanding the Effects of Different Compo-
nents of ADVT. In this section we present results demon-
strating the importance of three key algorithmic components
of ADVT, namely the Voronoi-based partitions, the cell-size-
aware optimistic upper-confidence bound and the Stochastic
Bellman backups.

Effects of Voronoi-based partitioning for ADVT. To
understand the benefit of our Voronoi-based partitioning
method, we compare the results of ADVT with those of
ADVT-R. Table 3 shows that ADVT-R slightly outperforms
ADVT in the Pushbox2D, Parking2D, VDP-Tag and
LunarLander problems, indicating that a rectangular-based
partitioning works well for low-dimensional action spaces.
However, Table 4 shows that ADVT-R is uncompetitive in
the SensorPlacement problems as the dimensionality of the
action space increases. For rectangular-based partitionings,
the diameters of the cells can shrink very slowly in higher-
dimensional action spaces. Additionally, the cell refinement
method is independent of the spatial locations of the sampled
actions. Both properties result in loose optimistic upper-
confidence bounds of the Q-values, leading to excessive
exploration of sub-optimal areas of the action space. For
Voronoi trees, the geometries (and therefore the diameters)
of the cells are much more adaptive to the spatial locations
of the sampled actions, leading to more accurate optimistic
upper-confidence bounds of the associated Q-values which
avoids over-exploration of areas in the action space that
already contain sufficiently many sampled actions.
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Table 2. Average total discounted rewards and 95% confidence intervals of ADVT, VOMCPOW and POMCPOW on the Pushbox,
Parking, VDP-Tag and LunarLander problems. The average is taken over 1000 simulation runs per solver and problem, with a
planning time of 1s per step. The best result for each problem is highlighted in bold.

Pushbox2D Pushbox3D Parking2D Parking3D VDP-Tag LunarLander
ADVT 351.6± 10.0 322.1± 14.9 35.2± 1.9 32.6± 3.5 30.5± 1.0 26.01± 1.2
VOMCPOW 129.8± 13.3 73.5± 13.8 −0.78± 2.8 −18.4± 1.4 32.9± 0.9 13.3± 2.2
POMCPOW 82.1± 14.2 3.6± 12.9 −5.1± 3.0 −25.7± 1.4 28.2± 1.1 13.5± 2.1
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Figure 3. Average total discounted rewards of all tested solvers on the SensorPlacement problems. The average is taken over
1,000 simulation runs per solver and problem.

Table 3. Average total discounted rewards and 95% confidence intervals of all tested solvers on the Pushbox, Parking, VDP-Tag
and LunarLander problems. The average is taken over 1000 simulation runs per solver and problem, with a planning time of 1s per
step.

Pushbox2D Pushbox3D Parking2D Parking3D VDP-Tag LunarLander
ADVT-R 371.4± 9.8 321.2± 15.1 38.9± 1.8 24.3± 3.4 30.2± 1.0 29.6± 1.1
ADVT (L=0) 340.8± 14.7 294.6± 13.3 29.2± 3.5 18.6± 1.7 28.7± 1.1 24.7± 1.2
ADVT-MC 319.6± 13.7 311.0± 16.2 −3.2± 1.8 −14.7± 0.5 33.5± 0.8 21.9± 1.7
VOMCPOW+our RT+our BB 322.9± 12.1 274.9± 14.2 28.2± 1.8 24.4± 2.4 - -
VOMCPOW+our BB 316.3± 13.6 134.2± 17.4 27.5± 1.9 23.7± 2.5 29.9± 1.0 19.9± 1.6
VOMCPOW+our RT 316.0± 12.3 268.9± 14.2 −0.42± 2.8 −15.7± 1.5 - -
POMCPOW+our RT+our BB 314.2± 13.0 245.7± 14.1 27.7± 1.8 8.8± 2.6 - -
POMCPOW+our BB 300.6± 12.6 128.8± 17.5 24.2± 1.9 −10.4± 2.1 27.5± 1.2 18.4± 2.2
POMCPOW+our RT 270.6± 18.9 203.7± 14.3 −5.2± 2.9 −22.8± 1.3 - -

Table 4. Average total discounted rewards and 95% confidence intervals of all tested solvers on the SensorPlacement problems.
The average is taken over 1000 simulation runs per solver and problem, with a planning time of 1s per step.

SensorPlacement-6 SensorPlacement-8 SensorPlacement-10 SensorPlacement-12
ADVT 842.8± 9.5 706.8± 17.5 565.1± 21.7 303.0± 19.8
ADVT-R 676.3± 19.7 238.1± 33.5 28.7± 18.4 −17.3± 7.4
ADVT (L = 0) 780.4± 12.6 448.8± 15.9 325.3± 16.2 102.5± 7.4
ADVT-MC 812.6± 11.4 692.7± 17.7 551.2± 18.3 293.5± 19.6
VOMCPOW 768.5± 16.4 305.6± 25.8 110.1± 24.5 −8.2± 13.2
VOMCPOW+our RT+our BB 823.4± 15.1 679.1± 17.9 481.6± 22.2 191.3± 17.6
VOMCPOW+our BB 779.2± 16.1 654.9± 16.3 453.6± 22.8 182.4± 17.7
VOMCPOW+our RT 817.2± 15.8 663.4± 18.6 476.0± 22.7 189.9± 18.0
POMCPOW 377.6± 23.5 113.4± 24.2 −36.8± 11.3 −74.3± 12.9
POMCPOW+our RT+our BB 659.3± 17.2 428.7± 21.5 114.6± 16.6 −1.9± 6.6
POMCPOW+our BB 562.5± 18.3 408.7± 19.1 102.6± 14.4 −6.5± 7.1
POMCPOW+our RT 653.2± 17.3 425.2± 21.8 111.3± 16.8 −2.1± 6.8

Effects of cell-size-aware optimistic upper-confidence
bound. To investigate the importance of the component
L diam(P ) in the optimistic upper-confidence bound in
eq. (7), we compare ADVT and ADVT (L=0). The results

in Table 3 and Table 4 indicate that the cell-diameter-
aware component in the upper-confidence bound in eq. (7)
is important for ADVT to perform well, particularly in
the SensorPlacement problems. The reason is that in the
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Table 5. Success rates of all tested solvers on the Pushbox, Parking, VDP-Tag and LunarLander problems. The success rate is
with respect to 1,000 simulation per solver and problem, with a planning time of 1s per step.

Pushbox2D Pushbox3D Parking2D Parking3D VDP-Tag LunarLander
ADVT 0.985 0.969 0.912 0.916 0.985 0.969
ADVT-R 0.987 0.968 0.943 0.906 0.984 0.970
ADVT (L=0) 0.966 0.965 0.857 0.898 0.980 0.931
ADVT-MC 0.989 0.972 0.417 0.337 0.991 0.957
VOMCPOW 0.754 0.815 0.512 0.297 0.987 0.859
VOMCPOW+our RT+our BB 0.985 0.970 0.885 0.886 -
VOMCPOW+our BB 0.976 0.893 0.882 0.885 0.986 0.958
VOMCPOW+our RT 0.975 0.939 0.597 0.314 -
POMCPOW 0.712 0.692 0.401 0.125 0.979 0.876
POMCPOW+our RT+our BB 0.974 0.953 0.853 0.534 -
POMCPOW+our BB 0.970 0.891 0.793 0.246 0.976 0.943
POMCPOW+our RT 0.963 0.969 0.409 0.122 -

Table 6. Success rates of all tested solvers on the SensorPlacement problems. The success rate is with respect to 1,000
simulation per solver and problem, with a planning time of 1s per step.

SensorPlacement-6 SensorPlacement-8 SensorPlacement-10 SensorPlacement-12
ADVT 0.981 0.962 0.834 0.724
ADVT-R 0.832 0.692 0.756 0.557
ADVT (L = 0) 0.937 0.726 0.791 0.601
ADVT-MC 0.964 0.959 0.828 0.719
VOMCPOW 0.923 0.721 0.645 0.583
VOMCPOW+our RT+our BB 0.979 0.951 0.807 0.703
VOMCPOW+our BB 0.924 0.883 0.798 0.702
VOMCPOW+our RT 0.967 0.891 0.803 0.698
POMCPOW 0.738 0.636 0.519 0.321
POMCPOW+our RT+our BB 0.829 0.794 0.646 0.575
POMCPOW+our BB 0.794 0.779 0.641 0.563
POMCPOW+our RT 0.826 0.781 0.657 0.578

early stages of planning, the partitions associated to the
beliefs are still coarse, i.e., only a few candidate actions are
considered per belief. If some of those candidate actions
have small estimated Q-values, ADVT (L=0) may discard
large portions of the action space for a very long time,
even if they potentially contain useful actions. The cell-
diameter-aware bias term in eq. (7) alleviates this issue by
encouraging ADVT to explore cells with large diameters.
This is particularly important for problems with large action
spaces such as the SensorPlacement problems.

Effects of Stochastic Bellman backups. To investigate
the effects of this component, let us compare ADVT
with ADVT-MC. Table 3 and Table 4 reveal that ADVT
which uses stochastic Bellman backups often performs
significantly better, particularly in the Parking2D and
Parking3D problems. The reason is that in both problems
good rewards are sparse, particularly for beliefs where the
vehicle is located between the walls and slight deviations
from the optimal actions can lead to collisions. The
stochastic Bellman backups help to focus the search on
more promising regions of the action space. On the other
hand, in the VDP-Tag problem, ADVT-MC performs better
than ADVT. In this problem, it is important to reduce the
uncertainty with respect to the target location during the first
few steps by activating the range sensor. However, due to the
cost of activating the range sensor, this strategy often seems
suboptimal during the early stages of planning, when only a
few episodes have been sampled. At the same time, in this

problem, the stochastic Bellman backups in ADVT tend to
overestimate the Q-values for actions that do not activate the
range sensor (this effect is known as maximization bias inQ-
learning (Sutton and Barto 2018)). As a result, ADVT tends
to discard strategies that reduce the uncertainty with respect
to the target location during the first few steps. ADVT-
MC which uses Monte-Carlo backups, does not suffer from
maximization bias, which helps it to perform better than
ADVT in this problem.

6.3.3 Ablation Study Here we investgate how two
components of ADVT, namely, re-using partial search
trees and using stochastic Bellman backups instead of
Monte-Carlo backups, affect the baselines VOMCPOW and
POMCPOW when we apply these ideas to the baselines.
The variants of VOMCPOW and POMCPOW that re-
use partial search trees are denoted by VOMCPOW+RT
and POMCPOW+RT respectively. The variants of the
baselines that use stochastic Bellman backups are denoted
by VOMCPOW+BB and POMCPOW+BB. The variants
VOMCPOW+RT+BB and POMCPOW+RT+BB both re-use
partial search trees and perform stochastic Bellman backups.

Generally, the results in Table 3 and Table 4 indicate
that the baselines that re-use partial search trees perform
much better than the baselines VOMCPOW and POMCPOW
respectively, particularly in the Pushbox problems. These
results (as well as those of ADVT and all its variants)
indicate the benefit of re-using partial search trees that were

Prepared using sagej.cls



14 The International Journal of Robotics Research XX(X)

generated in previous planning steps instead of re-computing
the policy at every planning step. Similarly, the baselines
that use stochastic Bellman backups tend to outperform the
ones that use Monte-Carlo backups, except for the VDP-Tag
problem. This is consistent with our results for ADVT and
ADVT-MC and indicates that stochastic Bellman backup is a
simple, yet viable tool to improve the performance of MCTS-
based solvers.

7 Conclusion
We propose a new sampling-based online POMDP solver,
called ADVT, that scales well to POMDPs with high-
dimensional continuous action and observation spaces.
Our solver builds on a number of works that uses
adaptive discretization of the action space, and introduces
a more effective adaptive discretization method that uses
novel ideas: A Voronoi tree based adaptive hierarchical
discretization of the action space, a novel cell-size aware
refinement rule, and a cell-size aware upper-confidence
bound. For continuous observation spaces, our solver adopts
the Progressive Widening and explicit belief representation
strategy, enabling ADVT to scale to higher-dimensional
observation spaces. ADVT shows strong empirical results
against state-of-the-art algorithms on several challenging
benchmarks. We hope this work further expands the
applicability of general-purpose POMDP solvers.
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