Fast Optimization by Demon Algorithms

lan Wood and Tom Downs
Neural Network Laboratory, Department of Electrical and Computer Engineering
University of Queensland, St. Lucia 4072. Australia
{wood, td}@Qelec.uq.edu.au

ABSTRACT

We introduce four new general optimization algorithms based on the ‘demon’ algorithm from
statistical physics and the simulated annealing (SA) optimization method. These algorithms
use a computationally simpler acceptance function, but can use any SA annealing schedule or
move generation function. Computation per trial is significantly reduced. The algorithms are
tested on traveling salesman problems including Grotschel’s 442-city problem and the results are
comparable to those produced using SA. Applications to the Boltzmann machine are considered.

1. Introduction

We present here a number of optimization al-
gorithms based on the simulated annealing (SA)
method. These new methods aim to speed up SA
by reducing computation time per trial without
sacrificing the quality of solutions. The choice of
parameters is kept fairly simple, and applicability
to other variations of SA is maintained.

The initial motivation for this study came from
an interest in improving the speed of the Boltzmann
machine - a recurrent neural net model [1] which
requires Gibbs sampling of its internal states at a
low ‘temperature’ equilibrium for both its learn-
ing and operational phases. Attainment of a low-
temperature equilibrium has been achieved in the
past via simulated annealing but is slow enough
to deter most people from using the model. As
a means of improving the speed of the Boltzmann
machine one might consider speeding up both the
approach to equilibrium and the rate at which sam-
pling can occur.

Fast Gibbs sampling of equilibria is also im-
portant in computational statistical physics. One
approach due to Creutz [2] is aimed at the 2-D
Ising model of atomic spins in a ferromagnetic lat-
tice. Conventionally, this is simulated using the
Metropolis algorithm [3], but Creutz found he could
use a computationally simpler ’"demon’ algorithm to
achieve similar results in far less time.

In its original form the demon algorithm does
not aim to generate low energy states, and hence is
not directly useful for optimization. Optimization
problems can usually be framed in terms of a cost
or energy function which is to be minimized over a
space of possible solutions. Here we propose four
algorithms which vary the operation of the demon
algorithm to encourage it to search for optimal so-

lutions. The methods are tested on 200- and 442-
city traveling salesman problems and results on the
latter are compared with those reported using other
similarly general optimization algorithms.

2. The Metropolis Algorithm

The Metropolis algorithm was invented to allow
computer simulation of equilibria in statistical
physics. An initial state and a temperature are
specified, and a Markov chain of system states is
generated. Once equilibrium is reached at the re-
quired temperature, associated quantities can be
approximated from the chain of states. The algo-
rithm can be stated as follows.

1. choose an initial configuration (state) S
2. choose a temperature 7' > 0
3. repeat:

(a)
(b)

choose a new configuration S’

let AE = E(S") — E(S), where E(S) is
the energy of configuration S

(c) if AE < 0 accept new configuration, ie:
S=y

else if rand[0,1] < exp(—AE/T) accept
new configuration, ie: S =5’

(d)

(e) else reject new configuration
4. until stop_condition

The simulation would normally only be stopped
once the user has enough samples to calculate equi-
librium properties to a desired accuracy.

The method of choosing the next state is called
the generating function. Each new system state or
configuration should be a small stochastic perturba-
tion of the current state. For discrete parameters,
such as those present in the Boltzmann machine,

the generating function is usually a uniform random
distribution over the neighbouring states.

New states are accepted according to an accep-
tance function which depends on the difference in
energy between the current state and the proposed
state. The Metropolis algorithm accepts any state
transition which will reduce the system energy, and
accepts increases stochastically using the function
in 3(d).

3. Creutz’s Demon Algorithm

Creutz’s original demon algorithm can be stated as:

1. choose an initial configuration S
2. choose a demon energy D > 0
3. repeat:

(a) choose a new configuration S’
(b) let AE = E(S") — E(S)

(c) if AE < D accept new configuration and
update demon, ie: S =S5, D =D — AE

(d) else reject new configuration
4. until stop_condition

In this algorithm, the energy lost by the system
is given to an artificial variable called a ‘demon’.
Increases in system energy are only allowed if the
demon can provide the necessary energy, which it
then loses. As a result, total system energy is a con-
stant : E(S)+ D = C, for any state in the Markov
chain. Temperature is not specified directly, but
can be estimated from the chain of states. Its value
is clearly governed by the total energy C', which is
set at the energy of the initial state plus the initial
demon energy.

The acceptance function for Creutz’s method
is deterministic and computationally simpler than
that of the Metropolis algorithm. It replaces an ex-
ponentiation and the generation of a random num-
ber with a comparison and a subtraction. The se-
quence of states produced remains stochastic, but
derives this from the generating function.

4. Simulated Annealing

Kirkpatrick et al [4] altered the Metropolis algo-
rithm for optimization by making it specifically
aim for low energy states, whilst retaining its abil-
ity to escape local minima by the occasional ac-
ceptance of moves which increase system energy.
The only difference between simulated annealing
and the Metropolis algorithm is the addition of a
scheduling step:

3(f) if quasi-equilibrium reached, reduce temper-
ature according to schedule.

Kirkpatrick’s original annealing schedule was to
set

T(n)=aT(n-1) (1)

a € (0,1) where n is the number of times annealing
has been applied. This negative exponential (or
geometric) schedule is quite commonly used in ap-
plications and has produced good results ([4], [5]).

Simulated annealing is seen to consist of three
procedures: a move generating function, a move
acceptance function and an annealing schedule.
Many variations on the original generating func-
tion (eg:[6]) and annealing schedule (eg:[5]) have
been suggested. Far less effort seems to have gone
into the acceptance function. Other papers that
attempt a similar simplification of the acceptance
function include [7], [8], [9].

5. Demon Algorithms for Optimiza-
tion

Here we have altered Creutz’s algorithm to guide
us from an initial state towards lower energy states.
This is done by gradually removing energy from the
demon in the following ways:

e ‘annealing’ the demon value, much as Kirk-
patrick et al [4] and others have annealed the
temperature in simulated annealing.

e imposing a fairly low upper bound on the de-
mon, to truncate its value regularly.

The two above methods can each be improved by
introducing a stochastic demon value, which is nor-
mally distributed around a mean. The demon mean
then operates in a similar manner to the demon
value in the deterministic demon methods. The
stochastic demon will occasionally take on high val-
ues allowing the system to escape from local minima
that it might otherwise have been heavily delayed
or trapped by. However, the additional randomness
increases the computational cost of the methods.

The procedure for the bounded demon algorithm
is shown below:

Bounded Demon Algorithm

1. choose an initial configuration S
2. choose an initial demon energy D = Dy > 0
3. repeat:

(a) choose a new configuration S’

(b) let AE = E(S") — E(S)

(c) if AE < D accept new configuration and
update demon, ie: S =S5',D =D — AE

(d) else reject new configuration

(e) it D > Dy, D = Dy - enforce demon
upper bound

4. until stop_condition

The annealed demon algorithm replaces step 3(e)
with an annealing step:

3(e) if quasi-equilibrium reached, reduce demon
according to schedule, eg: D = ax D

A randomized version of each of the bounded and
annealed demon algorithms can be obtained by re-
placing D, the demon energy, with D,, in steps 2
& 3(e) and adding a step before 3(c) to generate
a demon value from a distribution centered around
this mean:

3(b)(ii) D = D, + noise value.

3(c) is also changed slightly, so that although the
demon value is checked for acceptance, its mean is
updated:

3(c) if AE < D accept new configuration and
update demon mean, ie: S =S’,D,, = D,, — AE.

The additive noise has mean 0 and variance spec-
ified by the user as a fraction of the Dmyg value.
This adds a stochastic element to the acceptance
calculation and allows rare large increases in energy,
ruled out by the deterministic algorithms.

It should be possible to combine these algorithms
with any of the alternative generating functions (eg:
FSA [6]) or annealing schedules (eg: polynomial [5])
that have been proposed.

6. Computational Complexity

Table: 1: Algorithm Complexity - Acceptance Function

| Algorithm H 0perations| Time|
Metropolis Alg m,e,r 24
Creutz’ Demon a,c 2
SA m,e,r 24
Bounded Demon a,c 2
R Bounded Demon a,c,3m,e,r 32
Annealed Demon a,c 2
R Annealed Demon || a,c,3m,e,r 32
Greedy c 1
TA c 1

Table 1 compare the computational complexity
of the algorithms in the worst case - the acceptance
of a new configuration which increases the system
energy. Operations are classed as a (addition and
subtraction), ¢ (compare), m (multiplication and
division), e (exponentiation) and r (random num-
ber generation). Relative computation time for
these calculations is approximately: a,c - 1; m -
3; r - 5; e - 16. The generating function is common
to all these algorithms and uses 2 x r + 3 X a for a
time of 13 units.

The annealing operation is only performed on av-
erage every N trials, where IV is likely to be over
100.

It requires a multiplication in negative exponen-
tial schedules and an addition in linear schedules.
The generating function requires two random num-
bers to be generated in all cases.

7. Traveling Salesman Problems

As a test of the capabilities of the new algorithm,
we chose the Traveling Salesman Problem (TSP).
For large numbers of cities, this class of problems is
recognized as being difficult to solve using general
combinatorial optimization algorithms [10]. It has
been widely studied and published results exist for
many optimization techniques on a range of TSP
instances. Also, global optima are known for some
large problem instances which allows a more abso-
lute evaluation of the performance of the various
algorithms.

The algorithms tested included the four demon
algorithms, as well as standard simulated anneal-
ing [4] and a greedy algorithm which only accepts
improvements in the cost function.

All algorithms were allowed to run to a maximum
of 107 trials, and simulations were stopped before
that if the number of consecutive rejected moves
exceeded 50,000. Only a little effort was made to
choose suitable values for the ‘user-defined’ param-
eters.

As a representative example, we show results on
one instance of a 200-city TSP, averaged over 5 runs
each starting from a random initial tour. The city
coordinates were chosen from a uniform random
distribution over a 10 x 10 grid. The move gener-
ation rule used was uniform 2-opt [11], or segment
reversal.

A paper by Dueck and Scheuer [7] using an
algorithm resembling the annealed demon algo-
rithm contained the results of detailed testing on
Grotschel’s 442-city problem [12]. This paper also
quotes results on these two TSPs by Rossier et al
[13] using exhaustive Lin-2-opt and simulated an-
nealing, and Muhlenbein et al [14] using genetic
algorithms.

The data for this problem and many others is
available in the TSPLIB archive at [15].

8. Dueck and Scheuer’s work

Dueck and Scheuer’s [7] main algorithm is known
as Threshold Accepting (TA). It uses a threshold
term that operates somewhat like the demon pa-
rameter in the demon algorithms. Choosing an
initial value for the threshold is somewhat differ-
ent because the threshold does not dynamically
reduce. The threshold is reduced over time via a
linear or hand-optimized annealing schedule and
quasi-equilibrium is not considered. Given these
differences, the algorithm pseudo-code is identical
to that of the annealed demon algorithm, except
that in 3(c), the threshold or demon value is not
altered:

3(c) if AE < D accept new configuration, ie:
S=5"

The principal differences between this algorithm
and the annealed demon algorithm are:

e the threshold does not absorb and release en-
ergy, unlike the demon.

e the only annealing schedules considered are lin-
ear or a problem-specific variation of this.

e the upper bound on individual energy increases
is fixed

e unlimited hill-climbing is possible, allowing
eventual escape from any deep local minima,
as well as unconstrained wandering.

Of the demon algorithms, only the two random-
ized algorithms allow the possibility of unlimited
hill-climbing.

The demon value in the the bounded demon al-
gorithms plays much the same role as the threshold
in TA. However the average demon value is usually
much lower than the demon upper bound, so this
bound can be set much higher than the threshold
in TA while maintaining a similar rate of energy
reduction. The demon value’s variation allows the
algorithm to occasionally accept state transitions
involving much larger increases in energy than can
be allowed under TA.

IS

]

9038
23T
sdéd
Y

B B

eIt et

jeSedetvtetetnsstel

0.5

o L L L L L L
0 0.5 1 15 2 25 3 35

Fig. 1: An optimal solution to Grotschel’s 442-city TSP

9. Results

All of the new algorithms require the choice of an
initial demon value. This choice is quite important
for the bounded demon algorithms since it is also
an annealing control. It is much less important for
the annealed demon algorithm, which has separate
parameters (such as « in eqn. 1) for annealing.

However, we have generally found that all the
algorithms were less sensitive to the choice of these
parameters than simulated annealing was to the
choice of a. Other parameters, such as those
involved in the determining of quasi-equilibrium,
were chosen as advised in [5].

9.1. Random scatter 200-city problem

Table: 2: 200-city TSP results

| Algorithm ” Average Best Trials
SA 106.28 | 104.10 | 1.09 M
Annealed Demon 104.71 103.52 | 4.22 M
Bounded Demon 106.15 105.02 10 M

R Annealed Demon 103.75 | 102.95 7 M
R Bounded Demon 105.66 105.30 10 M
Greedy 115.20 | 112.85 | 0.15 M

The fact that some of the algorithms terminated
well short of the maximum number of trials is some
cause for concern, since it is expected that more
trials would lead to better results. The following
tests showed that a more careful choice of parame-
ters could result in runs of any desired length, and
correspondingly better results.

9.2. Grotschel’s 442 city problem

Fig 1 shows an optimal solution to Grotschel’s 442-
city problem [12]. The optimal tour has a length
of 50.78 units. Results on this problem from [13]
using simulated annealing and from [14] using ge-
netic algorithms are summarized in Table 3. Both
report only their best results. Note that the Lin-2-
opt procedure was allowed to run until no further
improvement was possible.

Rossier et al [13] introduced a ‘Distance’ heuristic
for the problem, which requires that the two cities
chosen for consideration of a 2-opt move must lie
within a .45 radius of each other. This is the max-
imum distance to a neighbour for any of the 442
cities in Grotschel’s problem. Cities in this prob-
lem have on average around 20 neighbours within
this radius, and examination of the optimal solution
(fig. 1) shows that only one distance along the route
exceeds .45, indicating the likely usefulness of this
problem-specific heuristic.

Dueck and Scheuer [7] use this heuristic exten-
sively, and with good results. We show results
from our own simulations of the demon algorithms
and simulated annealing along with those from [7]
(threshold accepting) with the ‘Distance’ heuristic
and without on the 442-city problem. Each line
contains the average and best results over 25 ran-
dom starting tours.

The SA and demon algorithm simulations were
done with fairly careful selection of the user pa-
rameters. For instance, the negative exponential
schedule (eqn. 1) is governed by the parameter a.
Although many texts, eg: [5], suggest choosing « in
the range .85 .. .99., we found that values around

Table: 3: Simulated Annealing and Genetic Algorithms

Algorithm || Best result | Trials |

Lin-2-opt 57.30 unknown

SA Standard 53.30 2 M

SA Distance 51.765 2 M
Genetic Algorithm 51.21 unknown

Table: 4: Algorithms using 2-opt - 2 M trials

ule requiring any more parameter choices places an
unnecessary burden on the user.

11. Conclusion

We have presented here four new optimization al-
gorithms which differ from simulated annealing in
their acceptance function. The bounded and an-
nealed demon algorithms use a deterministic ac-
ceptance rule, which varies dynamically, and is
computationally simpler than simulated annealing.
Results on Grotschel’s 442-city TSP are compara-
ble with SA and related algorithms over the same
number of trials. We now intend to apply one of
the optimizing demon algorithms to the Boltzmann
machine in place of simulated annealing to speed up

Algorithm ” Average | Best |

Simulated Annealing 54.35 53.34
Bounded Demon 53.69 52.28

R Bounded Demon 53.97 53.48
Annealed Demon 54.73 53.62

R Annealed Demon 54 .44 53.16
Greedy 0.8 M 57.20 55.74
Threshold Accepting 52.96 51.94

Table: 5: Algorithms using 2-opt and Distance - 2 M trials

Algorithm ” Average | Best |
Simulated Annealing 51.72 51.23
Bounded Demon 52.24 51.60
R Bounded Demon 52.36 51.77
Annealed Demon 51.74 51.19
R Annealed Demon 51.75 51.26
Threshold Accepting 51.51 50.97

9996 were much more successful for SA at 2 M
trials. These reduced the system temperature from
an initial value, commonly 20, to a final value of
.01. This was low enough to ensure the rejection of
most energy increasing moves, meaning the system
was unlikely to evolve further.

10. Discussion

Dueck and Scheuer [7] admit that their ‘annealing’
schedule was optimized for Grotschel’s TSP. The
values chosen are not far removed from a linear
annealing schedule, which would require only one
parameter - the initial value. However, they choose
30 values for the threshold, each apparently held
for 1/30 th of the total number of trials. This
can be considered as the choosing of 30 parameters.
They report obtaining similar results using a linear
schedule, but no details are given.

Our exponential annealing schedule requires two
parameters - the initial demon value and « (eqn.
1). A linear schedule is also possible, but has not
yet been tried. We believe that an annealing sched-

its equilibration.

References

(1]

[10]

11]

[12]

(13]

D. H. Ackley, G. E. Hinton, and T. J. Sejnowski, “A
learning algorithm for Boltzmann machines,” Cogni-
tive Science, vol. 9, pp. 147-169, 1985. [Reprinted in
Anderson.Rosenfeld.88].

M. Creutz, “Microcanonical Monte Carlo simulation,”
Physical Review Letters, vol. 50, no. 19, pp. 1411-
1414, 1983.

N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth,
A. H. Teller, and E. Teller, “Equation of state calcula-
tions by fast computing machines,” Journal of Chem-
ical Physics, vol. 21, pp. 1087-1092, 1953.

S. Kirkpatrick, C. Gelatt, and M. Vecchi, “Optimi-
sation by simulated annealing,” Science, vol. 220,
pp. 671-680, 1983.

E. Aarts and J. Korst, Simulated Annealing and Boltz-
mann Machines. Chichester: Wiley, 1989.

H. Szu and R. Hartley, “Fast simulated annealing,”
Physics Letters A, vol. 122, pp. 157-162, 1987.

G. Dueck and T. Scheuer, “Threshold accepting: A
general purpose optimization algorithm appearing su-
perior to simulated annealing,” Journal of Computa-
tional Physics, vol. 90, pp. 161-175, 1990.

P. Moscato and J. Fontanari, “Stochastic versus de-
terministic update in simulated annealing,” Physics
Letters A, vol. 146, no. 4, pp. 204208, 1990.

H. Guo, M. Zuckermann, R. Harris, and M. Grant,
“A fast algorithm for simulated annealing,” Physica
Scripta, vol. T38, pp. 40—44, 1991.

G. Reinelt, The Traveling Salesman - Computational
Solutions for TSP Applications. Berlin: Springer-
Verlag, 1995.

S. Lin, “Computer solutions of the traveling salesman
problem,” The Bell System Technical Journal, vol. 44,
pp. 2245-2269, 1965.

M. Grotshel, Preprint no. 38, Polyhedrische Kombina-
torik and Schnittebenverfahren, Universitat Augsburg,
Germany, 1984.

Y. Rossier, R. Troyon, and T. Liebling, “Probabilistic
exchange algorithms and euclidean traveling salesman
problems,” OR Spektrum, vol. 8, pp. 151-164, 1986.
H. Muhlenbein, M. Gorges-Schleuter, and O. Kramer,
“Evolution algorithms in combinatorial optimization,”
Parallel Computing, vol. 7, pp. 65-85, 1988.

G. Reinelt, “T'SPLIB.”, http://softlib.rice.edu/softlib
/tsplib/, June 1995.

