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tri
al and Computer EngineeringUniversity of Queensland, St. Lu
ia 4072. Australiafwood, tdg�ele
.uq.edu.auABSTRACTWe introdu
e four new general optimization algorithms based on the `demon' algorithm fromstatisti
al physi
s and the simulated annealing (SA) optimization method. These algorithmsuse a 
omputationally simpler a

eptan
e fun
tion, but 
an use any SA annealing s
hedule ormove generation fun
tion. Computation per trial is signi�
antly redu
ed. The algorithms aretested on traveling salesman problems in
luding Grots
hel's 442-
ity problem and the results are
omparable to those produ
ed using SA. Appli
ations to the Boltzmann ma
hine are 
onsidered.1. Introdu
tionWe present here a number of optimization al-gorithms based on the simulated annealing (SA)method. These new methods aim to speed up SAby redu
ing 
omputation time per trial withoutsa
ri�
ing the quality of solutions. The 
hoi
e ofparameters is kept fairly simple, and appli
abilityto other variations of SA is maintained.The initial motivation for this study 
ame froman interest in improving the speed of the Boltzmannma
hine - a re
urrent neural net model [1℄ whi
hrequires Gibbs sampling of its internal states at alow `temperature' equilibrium for both its learn-ing and operational phases. Attainment of a low-temperature equilibrium has been a
hieved in thepast via simulated annealing but is slow enoughto deter most people from using the model. Asa means of improving the speed of the Boltzmannma
hine one might 
onsider speeding up both theapproa
h to equilibrium and the rate at whi
h sam-pling 
an o

ur.Fast Gibbs sampling of equilibria is also im-portant in 
omputational statisti
al physi
s. Oneapproa
h due to Creutz [2℄ is aimed at the 2-DIsing model of atomi
 spins in a ferromagneti
 lat-ti
e. Conventionally, this is simulated using theMetropolis algorithm [3℄, but Creutz found he 
oulduse a 
omputationally simpler 'demon' algorithm toa
hieve similar results in far less time.In its original form the demon algorithm doesnot aim to generate low energy states, and hen
e isnot dire
tly useful for optimization. Optimizationproblems 
an usually be framed in terms of a 
ostor energy fun
tion whi
h is to be minimized over aspa
e of possible solutions. Here we propose fouralgorithms whi
h vary the operation of the demonalgorithm to en
ourage it to sear
h for optimal so-

lutions. The methods are tested on 200- and 442-
ity traveling salesman problems and results on thelatter are 
ompared with those reported using othersimilarly general optimization algorithms.2. The Metropolis AlgorithmThe Metropolis algorithm was invented to allow
omputer simulation of equilibria in statisti
alphysi
s. An initial state and a temperature arespe
i�ed, and a Markov 
hain of system states isgenerated. On
e equilibrium is rea
hed at the re-quired temperature, asso
iated quantities 
an beapproximated from the 
hain of states. The algo-rithm 
an be stated as follows.1. 
hoose an initial 
on�guration (state) S2. 
hoose a temperature T > 03. repeat:(a) 
hoose a new 
on�guration S0(b) let �E = E(S0) � E(S), where E(S) isthe energy of 
on�guration S(
) if �E < 0 a

ept new 
on�guration, ie:S = S0(d) else if rand[0; 1℄ � exp(��E=T ) a

eptnew 
on�guration, ie: S = S0(e) else reje
t new 
on�guration4. until stop 
onditionThe simulation would normally only be stoppedon
e the user has enough samples to 
al
ulate equi-librium properties to a desired a

ura
y.The method of 
hoosing the next state is 
alledthe generating fun
tion. Ea
h new system state or
on�guration should be a small sto
hasti
 perturba-tion of the 
urrent state. For dis
rete parameters,su
h as those present in the Boltzmann ma
hine,



the generating fun
tion is usually a uniform randomdistribution over the neighbouring states.New states are a

epted a

ording to an a

ep-tan
e fun
tion whi
h depends on the di�eren
e inenergy between the 
urrent state and the proposedstate. The Metropolis algorithm a

epts any statetransition whi
h will redu
e the system energy, anda

epts in
reases sto
hasti
ally using the fun
tionin 3(d).3. Creutz's Demon AlgorithmCreutz's original demon algorithm 
an be stated as:1. 
hoose an initial 
on�guration S2. 
hoose a demon energy D > 03. repeat:(a) 
hoose a new 
on�guration S0(b) let �E = E(S0)�E(S)(
) if �E � D a

ept new 
on�guration andupdate demon, ie: S = S0; D = D ��E(d) else reje
t new 
on�guration4. until stop 
onditionIn this algorithm, the energy lost by the systemis given to an arti�
ial variable 
alled a `demon'.In
reases in system energy are only allowed if thedemon 
an provide the ne
essary energy, whi
h itthen loses. As a result, total system energy is a 
on-stant : E(S) +D = C, for any state in the Markov
hain. Temperature is not spe
i�ed dire
tly, but
an be estimated from the 
hain of states. Its valueis 
learly governed by the total energy C, whi
h isset at the energy of the initial state plus the initialdemon energy.The a

eptan
e fun
tion for Creutz's methodis deterministi
 and 
omputationally simpler thanthat of the Metropolis algorithm. It repla
es an ex-ponentiation and the generation of a random num-ber with a 
omparison and a subtra
tion. The se-quen
e of states produ
ed remains sto
hasti
, butderives this from the generating fun
tion.4. Simulated AnnealingKirkpatri
k et al [4℄ altered the Metropolis algo-rithm for optimization by making it spe
i�
allyaim for low energy states, whilst retaining its abil-ity to es
ape lo
al minima by the o

asional a
-
eptan
e of moves whi
h in
rease system energy.The only di�eren
e between simulated annealingand the Metropolis algorithm is the addition of as
heduling step:3(f) if quasi-equilibrium rea
hed, redu
e temper-ature a

ording to s
hedule.Kirkpatri
k's original annealing s
hedule was toset T (n) = � T (n� 1) (1)

� 2 (0; 1) where n is the number of times annealinghas been applied. This negative exponential (orgeometri
) s
hedule is quite 
ommonly used in ap-pli
ations and has produ
ed good results ([4℄, [5℄).Simulated annealing is seen to 
onsist of threepro
edures: a move generating fun
tion, a movea

eptan
e fun
tion and an annealing s
hedule.Many variations on the original generating fun
-tion (eg:[6℄) and annealing s
hedule (eg:[5℄) havebeen suggested. Far less e�ort seems to have goneinto the a

eptan
e fun
tion. Other papers thatattempt a similar simpli�
ation of the a

eptan
efun
tion in
lude [7℄, [8℄, [9℄.5. Demon Algorithms for Optimiza-tionHere we have altered Creutz's algorithm to guideus from an initial state towards lower energy states.This is done by gradually removing energy from thedemon in the following ways:� `annealing' the demon value, mu
h as Kirk-patri
k et al [4℄ and others have annealed thetemperature in simulated annealing.� imposing a fairly low upper bound on the de-mon, to trun
ate its value regularly.The two above methods 
an ea
h be improved byintrodu
ing a sto
hasti
 demon value, whi
h is nor-mally distributed around a mean. The demon meanthen operates in a similar manner to the demonvalue in the deterministi
 demon methods. Thesto
hasti
 demon will o

asionally take on high val-ues allowing the system to es
ape from lo
al minimathat it might otherwise have been heavily delayedor trapped by. However, the additional randomnessin
reases the 
omputational 
ost of the methods.The pro
edure for the bounded demon algorithmis shown below:Bounded Demon Algorithm1. 
hoose an initial 
on�guration S2. 
hoose an initial demon energy D = D0 > 03. repeat:(a) 
hoose a new 
on�guration S0(b) let �E = E(S0)�E(S)(
) if �E � D a

ept new 
on�guration andupdate demon, ie: S = S0; D = D ��E(d) else reje
t new 
on�guration(e) if D > D0; D = D0 - enfor
e demonupper bound4. until stop 
onditionThe annealed demon algorithm repla
es step 3(e)with an annealing step:3(e) if quasi-equilibrium rea
hed, redu
e demona

ording to s
hedule, eg: D = � �D



A randomized version of ea
h of the bounded andannealed demon algorithms 
an be obtained by re-pla
ing D, the demon energy, with Dm in steps 2& 3(e) and adding a step before 3(
) to generatea demon value from a distribution 
entered aroundthis mean:3(b)(ii) D = Dm + noise value.3(
) is also 
hanged slightly, so that although thedemon value is 
he
ked for a

eptan
e, its mean isupdated:3(
) if �E � D a

ept new 
on�guration andupdate demon mean, ie: S = S0; Dm = Dm ��E.The additive noise has mean 0 and varian
e spe
-i�ed by the user as a fra
tion of the Dm0 value.This adds a sto
hasti
 element to the a

eptan
e
al
ulation and allows rare large in
reases in energy,ruled out by the deterministi
 algorithms.It should be possible to 
ombine these algorithmswith any of the alternative generating fun
tions (eg:FSA [6℄) or annealing s
hedules (eg: polynomial [5℄)that have been proposed.6. Computational ComplexityTable: 1: Algorithm Complexity - A

eptan
e Fun
tionAlgorithm Operations TimeMetropolis Alg m,e,r 24Creutz' Demon a,
 2SA m,e,r 24Bounded Demon a,
 2R Bounded Demon a,
,3m,e,r 32Annealed Demon a,
 2R Annealed Demon a,
,3m,e,r 32Greedy 
 1TA 
 1Table 1 
ompare the 
omputational 
omplexityof the algorithms in the worst 
ase - the a

eptan
eof a new 
on�guration whi
h in
reases the systemenergy. Operations are 
lassed as a (addition andsubtra
tion), 
 (
ompare), m (multipli
ation anddivision), e (exponentiation) and r (random num-ber generation). Relative 
omputation time forthese 
al
ulations is approximately: a,
 - 1; m -3; r - 5; e - 16. The generating fun
tion is 
ommonto all these algorithms and uses 2� r + 3� a for atime of 13 units.The annealing operation is only performed on av-erage every N trials, where N is likely to be over100.It requires a multipli
ation in negative exponen-tial s
hedules and an addition in linear s
hedules.The generating fun
tion requires two random num-bers to be generated in all 
ases.

7. Traveling Salesman ProblemsAs a test of the 
apabilities of the new algorithm,we 
hose the Traveling Salesman Problem (TSP).For large numbers of 
ities, this 
lass of problems isre
ognized as being diÆ
ult to solve using general
ombinatorial optimization algorithms [10℄. It hasbeen widely studied and published results exist formany optimization te
hniques on a range of TSPinstan
es. Also, global optima are known for somelarge problem instan
es whi
h allows a more abso-lute evaluation of the performan
e of the variousalgorithms.The algorithms tested in
luded the four demonalgorithms, as well as standard simulated anneal-ing [4℄ and a greedy algorithm whi
h only a

eptsimprovements in the 
ost fun
tion.All algorithms were allowed to run to a maximumof 107 trials, and simulations were stopped beforethat if the number of 
onse
utive reje
ted movesex
eeded 50,000. Only a little e�ort was made to
hoose suitable values for the `user-de�ned' param-eters.As a representative example, we show results onone instan
e of a 200-
ity TSP, averaged over 5 runsea
h starting from a random initial tour. The 
ity
oordinates were 
hosen from a uniform randomdistribution over a 10 � 10 grid. The move gener-ation rule used was uniform 2-opt [11℄, or segmentreversal.A paper by Due
k and S
heuer [7℄ using analgorithm resembling the annealed demon algo-rithm 
ontained the results of detailed testing onGrots
hel's 442-
ity problem [12℄. This paper alsoquotes results on these two TSPs by Rossier et al[13℄ using exhaustive Lin-2-opt and simulated an-nealing, and Muhlenbein et al [14℄ using geneti
algorithms.The data for this problem and many others isavailable in the TSPLIB ar
hive at [15℄.8. Due
k and S
heuer's workDue
k and S
heuer's [7℄ main algorithm is knownas Threshold A

epting (TA). It uses a thresholdterm that operates somewhat like the demon pa-rameter in the demon algorithms. Choosing aninitial value for the threshold is somewhat di�er-ent be
ause the threshold does not dynami
allyredu
e. The threshold is redu
ed over time via alinear or hand-optimized annealing s
hedule andquasi-equilibrium is not 
onsidered. Given thesedi�eren
es, the algorithm pseudo-
ode is identi
alto that of the annealed demon algorithm, ex
eptthat in 3(
), the threshold or demon value is notaltered:3(
) if �E � D a

ept new 
on�guration, ie:S = S0.



The prin
ipal di�eren
es between this algorithmand the annealed demon algorithm are:� the threshold does not absorb and release en-ergy, unlike the demon.� the only annealing s
hedules 
onsidered are lin-ear or a problem-spe
i�
 variation of this.� the upper bound on individual energy in
reasesis �xed� unlimited hill-
limbing is possible, allowingeventual es
ape from any deep lo
al minima,as well as un
onstrained wandering.Of the demon algorithms, only the two random-ized algorithms allow the possibility of unlimitedhill-
limbing.The demon value in the the bounded demon al-gorithms plays mu
h the same role as the thresholdin TA. However the average demon value is usuallymu
h lower than the demon upper bound, so thisbound 
an be set mu
h higher than the thresholdin TA while maintaining a similar rate of energyredu
tion. The demon value's variation allows thealgorithm to o

asionally a

ept state transitionsinvolving mu
h larger in
reases in energy than 
anbe allowed under TA.
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Fig. 1: An optimal solution to Grots
hel's 442-
ity TSP9. ResultsAll of the new algorithms require the 
hoi
e of aninitial demon value. This 
hoi
e is quite importantfor the bounded demon algorithms sin
e it is alsoan annealing 
ontrol. It is mu
h less important forthe annealed demon algorithm, whi
h has separateparameters (su
h as � in eqn. 1) for annealing.However, we have generally found that all thealgorithms were less sensitive to the 
hoi
e of theseparameters than simulated annealing was to the
hoi
e of �. Other parameters, su
h as thoseinvolved in the determining of quasi-equilibrium,were 
hosen as advised in [5℄.

9.1. Random s
atter 200-
ity problemTable: 2: 200-
ity TSP resultsAlgorithm Average Best TrialsSA 106.28 104.10 1.09 MAnnealed Demon 104.71 103.52 4.22 MBounded Demon 106.15 105.02 10 MR Annealed Demon 103.75 102.95 7 MR Bounded Demon 105.66 105.30 10 MGreedy 115.20 112.85 0.15 MThe fa
t that some of the algorithms terminatedwell short of the maximum number of trials is some
ause for 
on
ern, sin
e it is expe
ted that moretrials would lead to better results. The followingtests showed that a more 
areful 
hoi
e of parame-ters 
ould result in runs of any desired length, and
orrespondingly better results.9.2. Grots
hel's 442 
ity problemFig 1 shows an optimal solution to Grots
hel's 442-
ity problem [12℄. The optimal tour has a lengthof 50:78 units. Results on this problem from [13℄using simulated annealing and from [14℄ using ge-neti
 algorithms are summarized in Table 3. Bothreport only their best results. Note that the Lin-2-opt pro
edure was allowed to run until no furtherimprovement was possible.Rossier et al [13℄ introdu
ed a `Distan
e' heuristi
for the problem, whi
h requires that the two 
ities
hosen for 
onsideration of a 2-opt move must liewithin a .45 radius of ea
h other. This is the max-imum distan
e to a neighbour for any of the 442
ities in Grots
hel's problem. Cities in this prob-lem have on average around 20 neighbours withinthis radius, and examination of the optimal solution(�g. 1) shows that only one distan
e along the routeex
eeds .45, indi
ating the likely usefulness of thisproblem-spe
i�
 heuristi
.Due
k and S
heuer [7℄ use this heuristi
 exten-sively, and with good results. We show resultsfrom our own simulations of the demon algorithmsand simulated annealing along with those from [7℄(threshold a

epting) with the `Distan
e' heuristi
and without on the 442-
ity problem. Ea
h line
ontains the average and best results over 25 ran-dom starting tours.The SA and demon algorithm simulations weredone with fairly 
areful sele
tion of the user pa-rameters. For instan
e, the negative exponentials
hedule (eqn. 1) is governed by the parameter �.Although many texts, eg: [5℄, suggest 
hoosing � inthe range .85 .. .99., we found that values around



Table: 3: Simulated Annealing and Geneti
 AlgorithmsAlgorithm Best result TrialsLin-2-opt 57.30 unknownSA Standard 53.30 2 MSA Distan
e 51.765 2 MGeneti
 Algorithm 51.21 unknownTable: 4: Algorithms using 2-opt - 2 M trialsAlgorithm Average BestSimulated Annealing 54.35 53.34Bounded Demon 53.69 52.28R Bounded Demon 53.97 53.48Annealed Demon 54.73 53.62R Annealed Demon 54.44 53.16Greedy 0.8 M 57.20 55.74Threshold A

epting 52.96 51.94Table: 5: Algorithms using 2-opt and Distan
e - 2 M trialsAlgorithm Average BestSimulated Annealing 51.72 51.23Bounded Demon 52.24 51.60R Bounded Demon 52.36 51.77Annealed Demon 51.74 51.19R Annealed Demon 51.75 51.26Threshold A

epting 51.51 50.97.9996 were mu
h more su

essful for SA at 2 Mtrials. These redu
ed the system temperature froman initial value, 
ommonly 20, to a �nal value of.01. This was low enough to ensure the reje
tion ofmost energy in
reasing moves, meaning the systemwas unlikely to evolve further.10. Dis
ussionDue
k and S
heuer [7℄ admit that their `annealing's
hedule was optimized for Grots
hel's TSP. Thevalues 
hosen are not far removed from a linearannealing s
hedule, whi
h would require only oneparameter - the initial value. However, they 
hoose30 values for the threshold, ea
h apparently heldfor 1/30 th of the total number of trials. This
an be 
onsidered as the 
hoosing of 30 parameters.They report obtaining similar results using a linears
hedule, but no details are given.Our exponential annealing s
hedule requires twoparameters - the initial demon value and � (eqn.1). A linear s
hedule is also possible, but has notyet been tried. We believe that an annealing s
hed-

ule requiring any more parameter 
hoi
es pla
es anunne
essary burden on the user.11. Con
lusionWe have presented here four new optimization al-gorithms whi
h di�er from simulated annealing intheir a

eptan
e fun
tion. The bounded and an-nealed demon algorithms use a deterministi
 a
-
eptan
e rule, whi
h varies dynami
ally, and is
omputationally simpler than simulated annealing.Results on Grots
hel's 442-
ity TSP are 
ompara-ble with SA and related algorithms over the samenumber of trials. We now intend to apply one ofthe optimizing demon algorithms to the Boltzmannma
hine in pla
e of simulated annealing to speed upits equilibration.Referen
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