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Abstract— Metaheuristics such as Estimation of Distribution Often, the family and structure of the model used in an
Algorithms and the Cross-Entropy method use probabilistic  EDA is fixed (e.g. a set of Bernoulli distributions to generat
modelling and inference to generate candidate solutions in the bitstrings in the PBIL algorithm [6], or a factorized

optimization problems. The model fitting task in this class . ST . .
of algorithms has largely been carried out to date based on Gaussian distribution over a continuous search space in the

maximum likelihood. An alternative approach that is prevalent ~UMDA. algorithm [2]). For EDAs that use probabilistic
in statistics and machine learning is to use Bayesian inferee. graphical models, search is often performed to determine

In this paper, we provide a framework for the application  the model configuration. For example, the “Bayesian Op-
of Bayesian inference techniques in probabilistic model-bsed timization Algorithm” (BOA) [7] is an EDA that uses a

optimization. Based on this framework, a simple continuous B - work its d i del. The struct f th
Bayesian Estimation of Distribution Algorithm is described. We ayesian network as Its density model. The structure of the

evaluate and compare this algorithm experimentally with is  N€twork model is typically found using a greedy search over
maximum likelihood equivalent, UMDAY . a suitable metric. While some of these metrics are derived

from Bayesian modelling assumptions (e.g the BDe and
o o i BGe metrics [2]), their use in EDAs is quite different from
Estimation of Distribution Algorithms (EDAS) [1], [2], nerforming Bayesian inference. Bayesian network paramete
[3] construct a probability distributiop(x) over the search j, Epas are typically estimated from the data (the selected
spaceX of an optimization problem and adaptively leamyeg; noints from the sample) using a maximum likelihood
this model to drive the search process. Generally speadinggnnroach. Hence (despite the implications of its name), BOA
probability density function is used to generate a sample @fpegnotinvolve Bayesian inference in its modelling process.
candidate solutions at each iteration of the algorithmsThi | this paper, we develop a framework for the application
sample is evaluated with respect to the objective function ¢ gayesian inference techniques for model fitting in EDAs
the problem. A subset of the best points in the sample ay8,yEpAs). Based on this framework, a simple continuous
selected and used to modify the search distribution so thghyesjan Estimation of Distribution Algorithm is describe
(with higher probability) improved solutions are producedyg evaluate and compare this algorithm experimentally with
by sampling from the distribution in next generation. INis maximum likelihood equivalen{y MDA
the Cross-entropy method [4], selected points are used (OThe general idea of applying Bayesian inference in the
modify the search distribution so as to decrease the KWibaceqntext of EDAs has to some extent been considered (see [8]
Leibler divergence from a degenerate distribution over thg g the references therein). Zhang describes the notion of
(estimated) optimal solution to the search distributioBAS Bayesian inference in a canonical algorithm, and gives an
can also be viewed in terms of a stochastic minimizatiogxamme of using this idea by considering a prior based
process on the K-L divergence [5]. EDAs and the Crosssy the Boltzmann distribution for model parameters. Zhang
Entropy method are closely related and several instancggcysses possibilities for the implementation of various
of EDAs can be seen as equivalent to the Cross-Entropyqelling steps in this canonical algorithm but no specific
method, depending on the choice of density function andyorithms are implemented or experimentally evaluated.
implementation details of the algorithms. An example is subsequently presented using a Helmholtz
The model fitting task within each iteration of an EDA,5chine as the density model.
is typically carried out by a maximum likelihood estimation |, contrast to this previous work, we isolate the idea of
procedure. An alternative statistical framework is predd |,sing Bayesian inference in model-based optimizatiors It |
by Bayesian inference. In recent years, Bayesian tech8iqugen possible to derive specific Bayesian algorithms based
have become increasingly widely used in the fields of Mg, propaility density functions commonly used in the EDA
chine learning and statistics. Surprisingly however, B&@®@ |iterature which can be directly applied in various optieniz
inference has so far received very little attention in theAED ;4 settings. BayEDAs therefore have a direct connection
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TABLE | TABLE Il

GENERAL PSEUDOCODE FRAMEWORK FOR ANEDA. GENERAL PSEUDOCODE FRAMEWORK FOR BAYESIAN EDA.
Given: population sizeV/, selection parameter Given: population sizeV/, selection parameter
BEGIN (sett = 0) GenerateM individuals at random BEGIN (sett = 0) GenerateM individuals at random
REPEAT fort = 1,2, ... until stopping criterion is met REPEAT fort = 1,2, ... until stopping criterion is met
SelectM,.; < M individuals via truncation selection SelectM,.; < M individuals via truncation selection
Maximise the likelihoodp(D|6) to obtain a point estimaté Calculate the model posterigr, (6| D)
SampleM individuals fromp; (x|) SampleM individuals fromp; (x| D)
t=t+1 t=t+1
ENDREPEAT ENDREPEAT

algorithm, demonstrate it's feasibility and compare ittwit As mentioned above, in EDAs we need to be able to
UMDAY. Some related work concerning Bayesian inferenceample fronp; (x| D) to generate the population at generation
and optimization is discussed in Section V. Finally, Sect + 1. A standard technique in Bayesian data analysis to
tion VI presents some conclusions and outlines directiongo this is to sample from the joint distributionx, 4| D),

of future work. giving predicted observationg!, 01), ..., (x*,6M). Dis-
carding the sample parameter vectors leaves us with a
samplez!,.... 2™ drawn from the marginal distribution
p(x|D). The joint distribution can sometimes be sampled
from directly and otherwise can be sampled via Markov

II. MAXIMUM LIKELIHOOD AND BAYESIAN MODEL
FITTING IN EDAS

A. Framework

Consider the optimization problem Chain Monte Carlo sampling of the unnormalised distrilbutio
p(x|0)p(D|0)p(9). General pseudocode for a Bayesian EDA
min(f(x)),x € X is shown in Table II.
where f(x) is the fitness or objective functions is an It is evident that an implementation of this Bayesian EDA

individual solution point and¥ is the feasible search space ramework will involve making choices for the type of model
EDAs build a probabilistic modep;() over X at each used (whlc_h specifies(x|6) and the prior distributiop(#)).
generatiort of the algorithm based on selected individuals!1€S€ choices are dependent on the type of problem to be
Pseudocode for an EDA is shown in Table |I. solved (e.g continuous versus discrete solution varijbles

The probabilistic model in Table | is specified by a vectofOF Some cases the calculation of the model posterior and
of parameters). The parameters in an EDA model arePosterior predictive distribution can be carried out sinpl

typically estimated as the maximum likelihood values while other choices may require more sophisticated Markov
Chain Monte Carlo sampling techniques.

0 = argmax p({x', ..., xMs<1}|0)
) o o ) ~ 1. APPLICATION TOFACTORIZED-MODEL CONTINUOUS
An alternative to model fitting is provided by Bayesian EDAS

Statistics. In the Bayesian framework, a prior distribatio
p(0) is specified, reflecting our belief about the model The simplest and most widely developed model in EDAs
parameters before seeing any data. Once a set ofldata is a factorized product of univariate marginal distribnso

{x!,...,xMs} is observed, we update our belief using
Bayes rule N
y p(x) =[] pl:) 2)
D\|0)p(0 i=1
p(e|p) = L) &
p(D) A number of continuous EDAsx( € IR") have been

where p(0|D) is the posterior distribution over the modeldeveloped using the factorized probability model given in
parameters. The posterior predictive distribution for tufe  (2). For the remainder of this paper we focus on continuous
data pointx is then obtained by integrating over the modeEDAs that utilize a univariate Gaussian distribution

parameters:
1 _%(Mf

p(‘rl|:ul’0-12) = \/%0"6 7i (3)

The learning/model estimation problem in this case reguire

a method for calculating the meanm; and varianceo;
p(x|6, D)p(61D)df parameters of(z;). The standard model is to use a different
o; parameter for each search dimension, leading to elliptical
contours of equal probability with the constraint that the
principal axes of these ellipses must be parallel to one of
the coordinate axes of the space.

p(x|D) / p(x.6|D)df

(6|D)
p(x|0)p(D|0)p(6)dd
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. TABLE Il
A. Continuous UMDA ALGORITHM: BayEDA ..

The extension of the Univariate Marginal Distribu-
tion AlgGorithm (UMDA) [9] to continuous search spaces: gjyen: population sizelZ, selection parameter
UMDA_ [10], follows the general EDA framework of Ta- BEGIN (sett = 0) GenerateM individuals uniformly inS
ble | and employs the model from (3). UIMDAS, the mean REPEAT fort = 1,2, ... until stopping criterion is met

forth . h | SelectM;.; = Round(M - 7) individuals via truncation selection
parameters for the next generation are set as the sample mean Calculate sample mean and variances? of D to update model

of the selected population SampleM individuals fromp;(x|D, 0):
FOR i=1:M
1 Mea Draw sample variancé? ~ Inv — x2(Mse; — 1,52)
Wit = Tig = Z I‘Z (4) Draw sample meap ~ N (7, <:72[(Msez))
M;er — Draw new individualx; ~ N (ji, 52)
7= ENDFOR

and the standard deviation (variance) parameters are SEQDREPEAT
as the sample standard deviation (variance) of the selecte

population
1 Moot wheres? is the sample variance of the data. The conditional
Oit =St =\ JFT > (2] —7)? (5) density fory is
= ,LL|D702 ~ N(f, UQ/Msel) (7)

At any given generatiomm ando; ; represent the maximgm hereT is the sample mean of the daia
likelihood estimates for the mean and standard deviation &f e N o
i S 9 The predictive distribution fofe given the datay ando
each marginal distributiop(z;|u:, o7). i
The initial population { = 0) is generated from a uniform
distribution across the feasible search space. In the first
generation,u; o and o; o are estimated based on selected In the BayEDA.q algorithm, sampling from the posterior
points from this random populatioR’MDA¢ uses trunca- predictive distributionp(Z/D) can be easily carried out in a
tion selection: a fraction of the population with the best three-step process. Firstly, a sampfeis drawn from (6),
objective function values are retained for building/adt@pt then this sample is used to draw a samplérom (7) and
the search model Therefore, only two algorithm parametersfinally both samples are used to draw a samplieom (8).
must be specified for an implementation GMDAS: the The process is repeatéd times to produce the population
population sizeM and the selection parameter for use in the next generation.
The algorithm is summarized in Table Ill. Note that for
B. BayEDA.c: A Continuous Bayesian EDA based on gmplementation purposes, a random drafrom an inverse-
univariate Gaussian model x2 distribution can be obtained by firstly drawing a sample

Using the factorized model from (2) above, a Bayesiaf from thex? distribution and applying = s*/z. The x
EDA can be specified (here for simplicity we usto refer to distribution is also a special case of the gamma distributio
any one of the solution componentsin a multidimensional (see [11] for details).
problem). For a univariate Gaussian (Normal) model distrib
tion, Bayesian inference can readily be carried out: theltres
ing expressions given here are drawn from Gelman et al. [1
We consider the simplest case of a noninformative (flat)rpri ! G
for the model parameters, expressing no preference for afigns, and for comparison results W'MDQC on the same
particular values for the model parameters before obsgrvifdnctions. SinceBayEDA.q and UMDA_" use the same
any data. In this case, inference depends only on the d4fgctorised Gaussian) model and data (while differing i@ th

(selected individuals). The standard noninformative piso W& inference is performed on the model parameters), we
uniform on (u, log 02) or would expect the two algorithms to produce results that are

similar in a number of respects. Our main aim is to gain

#|D, 0% ~ N(p,0?) €)

IV. EXPERIMENTAL RESULTS

17.In this Section we present simulation results for the
(fiayEDACG algorithm, using several standard test func-

p(p,0?) o (6)7* some insight into the behaviour of tlayEDA .q algorithm
o _ _ rather than attempting to claim state-of-the-art perforosa
The joint posterior can be factorised as on these problems. Therefore, we make no attempt to tune
9 9 9 the parameters of the algorithms to these problems. The test
p(u,0°|D) = p(plo”, D)p(a”|D) i isted i i -
' ' functions used are listed in Table 1V. While these functions
In this case, the marginal density foris have some Iimita_ltions, they are commonly used and sufficient
here for illustrative purposes.
o?|D ~Tnv — x* (Mo — 1, 5°) (6) Firstly we consider a simple unimodal problem (the 1-D

Sphere function) to show the experimental convergence of
1Rounding if N - 7 is not an integer. the algorithm compared t&/MDAS. For each algorithm,



TABLE IV
TEST FUNCTIONS USED IN THE EXPERIMENTS

Name Function
2

Sphere fspn(x) =220 x;
—512<z; < 5.12,fsph(x*) =0

Rastrigin fRas(x) = ?:1(5022 — 10 cos(27z;) + 10)

=5 <2 <5, fRas(x*) =0

Rosenbrock| fros(x) = 371 (2?2 — 2i11)? + (2 — 1)?

—2<2; <2, fros(x*) =0

Griewangk | fari(x) = Y12y sebg — [1ieq cos (%) +1

—600 < z; < 600, fari(x*) =0

Ackleys fack(x) = —20exp (—0.21 / % > :cf)

Model Mean parameter value

—exp (% >R cos 27rxi) +20+e = = = UMDA (mean)
—15 < @i < 30, facn(x”) =0 — Bayeon (mean |
BayEDA (std)
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Fig. 1. Best-so-far performance curves fayEDA g andUMDAS on
the 1-D Sphere function. Shown are average performance amedage +
standard deviation) curves.
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M = 40 and 7 = 0.9. 100 trials were conducted over
100 generations, with results shown as mean and standard i )
deviations over these trials. Figure 1 shows the performang'g' 3 Evc?mtlon of model variance parameter values BatyEDAcq

: ndUMDA{ on the 1-D sphere function. Shown are average performance
of each algorithm as a function of generations (in termsnd (average + standard deviation) curves. BagyEDA ¢ the curves are
of best solution value found so far). While the perforaverages of posterior samples and standard deviationsrawer
mance is fairly similar,BayEDA.¢ attains a lower value
on average. Progress fUrMDAf appears to converge after
about 15 generations, compared to around 20 generations f@/BayEDA .; introduces a source of variability not present
BayEDA.c. The standard deviations on the curves for eacih UMDAY, which increases the search diversity. For this
algorithm are almost identical. problem the effect leads to an improvement in performance.

Figures 2 and 3 show the evolution of the model parame-

ters for each algorithm. Note that flfayEDA ¢ these are A further illustration of the dynamics of thBayEDA ¢
first averaged over th&/ model parameter samples genermodel is shown in Figure 4. For this experimei, = 40
ated and used when sampling from the posterior predictiand 7 = 0.95 over 100 generations. The graph shows the
distribution of each population. Apart from a fluctuation inevolution of a single trial run of the BayEDA model on
standard deviation around generation 5-15, the curvesiéor tthe 1-D Rastrigin function, in terms of the sampled model
1 parameters are very similar (Figure 2). In Figure 3 howeveparameter values over generations. The model samplewg/follo
we see a slower convergence for BeyEDA.¢ o2 estimate a trajectory with mean values tending towards the location o
compared to that oUMDAf. This explains the improved the global optimum#£ = 0) and variance values converging
performance oBayEDA_ ¢ in Figure 1. The model sampling towards zero. However, clustering is evident in the points



50, 70

Fig. 4. A plot of the model posterior samples over a single @in pjg 5 The 1-D Rastrigin function in over the range covergdHe results
BayEDA.g on the 1-D Rastrigin function. Clustering is evident alohg t ;, Figure 4.

mean parameter axis and can be related to the structure girdbéem.

TABLE V
PERFORMANCERESULTS ON10D VERSIONS OF THE TEST FUNCTIONS
on this trajectory, showing that the algorithm spends more
time in certain areas of the search space. For reference, the _Function | UMDA Mean (Std) | BayEDA Mean (Std)
1-D Rastrigin function is shown in Figure 5 over the range Sphere 9.63E-09 (2.36E-09)| 1.18E-08 (2.63E-09)
explored by the algorithm. Comparing Figures 4 and 5 it can Sﬁig:]gg?ock ;:%ig;%‘sl%a%%% é;g?g;%‘r’l ((22'.1461'5E'%52))
be seen that the clustering in model samples corresponds 10 Griewangk | 7.54E-14 (2.45E-14)| 1.08E-13 (2.86E-14)
the local minima of the function. Ackleys 1.96E-08 (2.75E-09)| 2.11E-08 (3.42E-09)
In the Bayesian framework, model parameter values are
drawn from the model according to their posterior distri-
bution. This fact can offer an explanation for the resultliscussed in the 1-D examples above). As mentioned above,
shown in Figure 4. Selection will lead to a representationo attempt was made to optimize the valuesdbfaindr used
of the regions on the 1-D Rastrigin function close to eachh BayEDA. . - a study of the sensitivity of the performance
local optimum. This will make more likely the relative of the algorithms to the parameter values is outside the
probability of Gaussian models with a mean peaked ovetope of this paper. The global optimum for each problem
a local optimum and a variance in proportion to the size of was found with high precision, apart from the Rosenbrock
local basin of attraction. As a consequence, models of sufimction for which convergence is known to be difficult.
shape and location will tend to appear more frequently in
samples from the posterior distribution. The influence &f th V. RELATED WORK
effect will however depend on the test problem and the algo- The literature concerned with the development of opti-
rithm parameters. For this experiment, a very soft selactiomization techniques is both large and diverse. Optimimatio
pressure was used and the initial population was uniform ifigorithms that construct some kind of statistical model an
the range[—15,5]. This causes the model to evolve moreyse this model to influence the search process can be found
slowly over the objective function surface and causes it t; areas such as Evolutionary Computation, Metaheurjstics
encounter more locally optimal basins of attraction beforachine Learning and Engineering Design, as well as in the
locating the region around the global optimum. fields of stochastic and global optimization.
Experiments were also conducted on 10-D versions of the
test functions given in Table IV. For each problem, 30 trialé\- Objective Function Models
were conducted. Following the experiments in Chapter 8 A different approach to model-based optimization is to
of [2], we usedM = 2000 andT = 0.5. For fs,n, runs were construct a model using not only selected points visited
for 100 generations and for all other functions runs were fauring the search, but also the corresponding objective-fun
200 generations The results are summarized in Table V. tions values for those points searched. Newton’s method is a
Overall the results show highly similar performance fosimple and well-known example of this class of techniques,
the two aIgorithms.UMDAf showed slightly better mean fitting a local quadratic model at each iteration of the
performance in most cases, although the standard deviatialgorithm and directing the search using the optimum of the
of the results forBayEDA.g was almost always larger model (Sequential quadratic programming techniques gen-
that of UMDAY (possibly a result of the model variability eralise this idea) [12]. Response surface methodology [13]




also utilizes optimization procedures that fit a low-ordenoninformative prior over univariate Gaussian model pa-
polynomial regression model to thig,;, S(x¢;) data and use rameters, informative priors may be useful to incorporate
simple calculus to estimate the optima from the polynomiaknowledge about optimization problems (e.g constraints)
Experimental design techniques are an important part of a consistent way, something that is not possible with
response surface approaches. EDAs employing maximum-likelihood parameter estimation.
Stochastic process models of the objective function hava addition, conjugate priors can be utilized to produce
also been widely considered as response surfaces andefficient implementations of Bayesian inference for many
model-based optimization, dating back to an algorithm ineommonly used distributions.
troduced by Kushner in 1964 based on a 1-D Weiner pro-
cess [14]. Subsequent work includes that of Stuckman [15],
the Bayesian approach to global optimization of Mockus [16] The authors would like to thank Dirk Kroese for contribut-
and the P-algorithm of Zilinskas [17]. In engineering desig ing to the development of this work and related discussion.
more sophisticated stochastic process models have bdan Wood would like to acknowledge the support of the ARC
employed as response surfaces for model-based optimizatiCenter for Complex Dynamic Systems and Control. Jonathan
In particular, kriging models have received attention [18]Keith and George Sofronov would like to acknowledge the
These techniques produce a surrogate model of the objectisigpport of an Australian Research Council (ARC) Discovery
function, together with a value for the confidence of thé&rant (DP0556631) and additionally for JK a National Med-
model at any poink. Together with information about the ical and Health Research Council (NHMRC) project grant
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used to define criteria that indicate the expected utility of
searching future points in the search space [19].

Previous work on model-based optimization can also be1)
found in artificial intelligence and machine learning. Meor
and Schneider use locally weighted regression to build a
model of the objective function using all points evaluated|]
during the search [20]. Boyan and Moore propose the STAGE
algorithm [21], which learns an “evaluation function” whic 3]
aims to predict the outcome of a local search algorithm. This

evaluation function model is then used to guide future dearc "

VI. CONCLUSIONS

We have presented a new approach to model fitting in
EDAs based on Bayesian inference, a method which utif5]
lizes prior distributions on model parameters and gener-
ates each successive population from the posterior predigg
tive distribution. A simple implementation of this frame-
work, BayEDA.c using a Gaussian model with a non-
informative prior was detailed and experimentally compare (7]
against the frequentist alternative, UMBATheBayEDA .
method outperformed the UMOA method on an example
1-dimensional optimization problem. Its performance oe fiv g
10-dimensional example problems was overall very similar
to that of UMDAC. The differences between the two results
are primarily due to the slightly larger variance of the g
BayEDA.g model.

We believe that there is considerable scope for futuré®
work in developing Bayesian techniques in EDAs. While the
BayEDA_ g implementation described here is a continuous
univariate model, multivariate models and/or models folt1]
discrete variables exist in the Bayesian literature andiisho 1)
be readily applicable to EDAs. In principle, Bayesian EDAs
could be developed using many of the other probabilistig3!
models commonly used in discrete and continuous EDAgy,
(though some implementations will be more complex than
others). Furthermore, the Bayesian framework opens up tPl%]
possibility of utilizing prior distributions in the contexf
optimization. Although this paper only considers a simple
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