
Bayesian Inference in Estimation of Distribution Algorithms
(Corrected Version of CEC’07 paper: September 2008)

Marcus Gallagher, Ian Wood, Jonathan Keith and George Sofronov

Abstract— Metaheuristics such as Estimation of Distribution
Algorithms and the Cross-Entropy method use probabilistic
modelling and inference to generate candidate solutions in
optimization problems. The model fitting task in this class
of algorithms has largely been carried out to date based on
maximum likelihood. An alternative approach that is prevalent
in statistics and machine learning is to use Bayesian inference.
In this paper, we provide a framework for the application
of Bayesian inference techniques in probabilistic model-based
optimization. Based on this framework, a simple continuous
Bayesian Estimation of Distribution Algorithm is described. We
evaluate and compare this algorithm experimentally with its
maximum likelihood equivalent, UMDA

G
c .

I. I NTRODUCTION

Estimation of Distribution Algorithms (EDAs) [1], [2],
[3] construct a probability distributionp(x) over the search
spaceX of an optimization problem and adaptively learn
this model to drive the search process. Generally speaking,a
probability density function is used to generate a sample of
candidate solutions at each iteration of the algorithm. This
sample is evaluated with respect to the objective function of
the problem. A subset of the best points in the sample are
selected and used to modify the search distribution so that
(with higher probability) improved solutions are produced
by sampling from the distribution in next generation. In
the Cross-entropy method [4], selected points are used to
modify the search distribution so as to decrease the Kullback-
Leibler divergence from a degenerate distribution over the
(estimated) optimal solution to the search distribution. EDAs
can also be viewed in terms of a stochastic minimization
process on the K-L divergence [5]. EDAs and the Cross-
Entropy method are closely related and several instances
of EDAs can be seen as equivalent to the Cross-Entropy
method, depending on the choice of density function and
implementation details of the algorithms.

The model fitting task within each iteration of an EDA
is typically carried out by a maximum likelihood estimation
procedure. An alternative statistical framework is provided
by Bayesian inference. In recent years, Bayesian techniques
have become increasingly widely used in the fields of ma-
chine learning and statistics. Surprisingly however, Bayesian
inference has so far received very little attention in the EDA
literature.

Marcus Gallagher is with the School of Information Technology and
Electrical Engineering, University of Queensland 4072, Australia (email:
marcusg@itee.uq.edu.au). Ian Wood is with the School of Mathematical
Sciences, Queensland University of Technology, GPO Box 2434 Brisbane
QLD 4001 Australia (email: wood@itee.uq.edu.au). Jonathan Keith is with
the School of Mathematical Sciences, Queensland University of Technology,
GPO Box 2434 Brisbane QLD 4001 Australia (email: j.keith@qut.edu.au).
George Sofronov is with the Department of Mathematics, University of
Queensland 4072, Australia (email:georges@maths.uq.edu.au).

Often, the family and structure of the model used in an
EDA is fixed (e.g. a set of Bernoulli distributions to generate
the bitstrings in the PBIL algorithm [6], or a factorized
Gaussian distribution over a continuous search space in the
UMDAc algorithm [2]). For EDAs that use probabilistic
graphical models, search is often performed to determine
the model configuration. For example, the “Bayesian Op-
timization Algorithm” (BOA) [7] is an EDA that uses a
Bayesian network as its density model. The structure of the
network model is typically found using a greedy search over
a suitable metric. While some of these metrics are derived
from Bayesian modelling assumptions (e.g the BDe and
BGe metrics [2]), their use in EDAs is quite different from
performing Bayesian inference. Bayesian network parameters
in EDAs are typically estimated from the data (the selected
best points from the sample) using a maximum likelihood
approach. Hence (despite the implications of its name), BOA
doesnot involve Bayesian inference in its modelling process.

In this paper, we develop a framework for the application
of Bayesian inference techniques for model fitting in EDAs
(BayEDAs). Based on this framework, a simple continuous
Bayesian Estimation of Distribution Algorithm is described.
We evaluate and compare this algorithm experimentally with
its maximum likelihood equivalent,UMDAG

c .
The general idea of applying Bayesian inference in the

context of EDAs has to some extent been considered (see [8]
and the references therein). Zhang describes the notion of
Bayesian inference in a canonical algorithm, and gives an
example of using this idea by considering a prior based
on the Boltzmann distribution for model parameters. Zhang
discusses possibilities for the implementation of various
modelling steps in this canonical algorithm but no specific
algorithms are implemented or experimentally evaluated.
An example is subsequently presented using a Helmholtz
machine as the density model.

In contrast to this previous work, we isolate the idea of
using Bayesian inference in model-based optimization. It is
then possible to derive specific Bayesian algorithms based
on probability density functions commonly used in the EDA
literature which can be directly applied in various optimiza-
tion settings. BayEDAs therefore have a direct connection
with maximum-likelihood based EDAs and the cross-entropy
method.

A brief outline of the paper is as follows. In Section II
we develop a framework for the application of Bayesian
inference in EDAs. Section III presents an instantiation of
this framework with a continuous EDA based on a univariate
Gaussian density model. Experimental results are reported
in Section IV to provide insight into the behaviour of the

TABLE I

GENERAL PSEUDOCODE FRAMEWORK FOR ANEDA.

Given: population sizeM , selection parameterτ
BEGIN (sett = 0) GenerateM individuals at random
REPEAT for t = 1, 2, . . . until stopping criterion is met

SelectMsel < M individuals via truncation selection
Maximise the likelihoodp(D|θ) to obtain a point estimatêθ
SampleM individuals frompt(x|θ̂)
t = t + 1

ENDREPEAT

algorithm, demonstrate it’s feasibility and compare it with
UMDAG

c . Some related work concerning Bayesian inference
and optimization is discussed in Section V. Finally, Sec-
tion VI presents some conclusions and outlines directions
of future work.

II. M AXIMUM L IKELIHOOD AND BAYESIAN MODEL

FITTING IN EDAS

A. Framework

Consider the optimization problem

min(f(x)),x ∈ X
where f(x) is the fitness or objective function,x is an
individual solution point andX is the feasible search space.
EDAs build a probabilistic modelpt() over X at each
generationt of the algorithm based on selected individuals.
Pseudocode for an EDA is shown in Table I.

The probabilistic model in Table I is specified by a vector
of parametersθ. The parameters in an EDA model are
typically estimated as the maximum likelihood values

θ̂ = argmax
θ

p({x1, ...,xMsel}|θ)

An alternative to model fitting is provided by Bayesian
Statistics. In the Bayesian framework, a prior distribution
p(θ) is specified, reflecting our belief about the model
parameters before seeing any data. Once a set of dataD =
{x1, . . . ,xMSel} is observed, we update our belief using
Bayes rule

p(θ|D) =
p(D|θ)p(θ)

p(D)
(1)

where p(θ|D) is the posterior distribution over the model
parameters. The posterior predictive distribution for a future
data pointx is then obtained by integrating over the model
parameters:

p(x|D) =

∫

p(x, θ|D)dθ

=

∫

p(x|θ, D)p(θ|D)dθ

=

∫

p(x|θ)p(θ|D)dθ

∝
∫

p(x|θ)p(D|θ)p(θ)dθ

TABLE II

GENERAL PSEUDOCODE FRAMEWORK FOR ABAYESIAN EDA.

Given: population sizeM , selection parameterτ
BEGIN (sett = 0) GenerateM individuals at random
REPEAT for t = 1, 2, . . . until stopping criterion is met

SelectMsel < M individuals via truncation selection
Calculate the model posteriorpt(θ|D)
SampleM individuals frompt(x|D)
t = t + 1

ENDREPEAT

As mentioned above, in EDAs we need to be able to
sample frompt(x|D) to generate the population at generation
t + 1. A standard technique in Bayesian data analysis to
do this is to sample from the joint distributionp(x, θ|D),
giving predicted observations(x1, θ1), . . . , (xM , θM). Dis-
carding the sample parameter vectors leaves us with a
sample x1, . . . , xM drawn from the marginal distribution
p(x|D). The joint distribution can sometimes be sampled
from directly and otherwise can be sampled via Markov
Chain Monte Carlo sampling of the unnormalised distribution
p(x|θ)p(D|θ)p(θ). General pseudocode for a Bayesian EDA
is shown in Table II.

It is evident that an implementation of this Bayesian EDA
framework will involve making choices for the type of model
used (which specifiesp(x|θ) and the prior distributionp(θ)).
These choices are dependent on the type of problem to be
solved (e.g continuous versus discrete solution variables).
For some cases the calculation of the model posterior and
posterior predictive distribution can be carried out simply,
while other choices may require more sophisticated Markov
Chain Monte Carlo sampling techniques.

III. A PPLICATION TO FACTORIZED-MODEL CONTINUOUS

EDAS

The simplest and most widely developed model in EDAs
is a factorized product of univariate marginal distributions

p(x) =

n
∏

i=1

p(xi) (2)

A number of continuous EDAs (x ∈ IRn) have been
developed using the factorized probability model given in
(2). For the remainder of this paper we focus on continuous
EDAs that utilize a univariate Gaussian distribution

p(xi|µi, σ
2
i) =

1√
2πσi

e
−

1

2
(

xi−µi
σi

)2 (3)

The learning/model estimation problem in this case requires
a method for calculating the meanµi and varianceσi

parameters ofp(xi). The standard model is to use a different
σi parameter for each search dimension, leading to elliptical
contours of equal probability with the constraint that the
principal axes of these ellipses must be parallel to one of
the coordinate axes of the space.

A. Continuous UMDA

The extension of the Univariate Marginal Distribu-
tion Algorithm (UMDA) [9] to continuous search spaces:
UMDAG

c [10], follows the general EDA framework of Ta-
ble I and employs the model from (3). InUMDAG

c , the mean
parameters for the next generation are set as the sample mean
of the selected population

µi,t = xi,t =
1

Msel

Msel
∑

j=1

xj
i (4)

and the standard deviation (variance) parameters are set
as the sample standard deviation (variance) of the selected
population

σi,t = si,t =

√

√

√

√

1

Msel − 1

Msel
∑

j=1

(xj
i − xi,t)2 (5)

At any given generation,µi,t andσi,t represent the maximum
likelihood estimates for the mean and standard deviation of
each marginal distributionp(xi|µi, σ

2
i).

The initial population (t = 0) is generated from a uniform
distribution across the feasible search space. In the first
generation,µi,0 and σi,0 are estimated based on selected
points from this random population.UMDAG

c uses trunca-
tion selection: a fractionτ of the population with the best
objective function values are retained for building/adapting
the search model1. Therefore, only two algorithm parameters
must be specified for an implementation ofUMDAG

c : the
population sizeM and the selection parameterτ .

B. BayEDAcG: A Continuous Bayesian EDA based on a
univariate Gaussian model

Using the factorized model from (2) above, a Bayesian
EDA can be specified (here for simplicity we usex to refer to
any one of the solution componentsxi in a multidimensional
problem). For a univariate Gaussian (Normal) model distribu-
tion, Bayesian inference can readily be carried out: the result-
ing expressions given here are drawn from Gelman et al. [11].
We consider the simplest case of a noninformative (flat) prior
for the model parameters, expressing no preference for any
particular values for the model parameters before observing
any data. In this case, inference depends only on the data
(selected individuals). The standard noninformative prior is
uniform on (µ, log σ2) or

p(µ, σ2) ∝ (σ2)−1

The joint posterior can be factorised as

p(µ, σ2|D) = p(µ|σ2, D)p(σ2|D)

In this case, the marginal density forσ is

σ2|D ∼ Inv − χ2(Msel − 1, s2) (6)

1Rounding ifN · τ is not an integer.

TABLE III

ALGORITHM: BayEDAcG .

Given: population sizeM , selection parameterτ
BEGIN (sett = 0) GenerateM individuals uniformly inS
REPEAT for t = 1, 2, . . . until stopping criterion is met

SelectMsel = Round(M · τ) individuals via truncation selection
Calculate sample meanx and variances2 of D to update model
SampleM individuals frompt(x|D, θ):
FOR i=1:M

Draw sample variancẽσ2 ∼ Inv − χ2(Msel − 1, s2)
Draw sample meañµ ∼ N(x, σ̃2/(Msel))
Draw new individualxi ∼ N(µ̃, σ̃2)

ENDFOR
ENDREPEAT
END

wheres2 is the sample variance of the data. The conditional
density forµ is

µ|D, σ2 ∼ N(x, σ2/Msel) (7)

wherex is the sample mean of the dataD.
The predictive distribution for̃x given the data,µ andσ

is
x̃|D, µ, σ2 ∼ N(µ, σ2) (8)

In theBayEDAcG algorithm, sampling from the posterior
predictive distributionp(x̃|D) can be easily carried out in a
three-step process. Firstly, a sampleσ̃2 is drawn from (6),
then this sample is used to draw a sampleµ̃ from (7) and
finally both samples are used to draw a samplex̃ from (8).
The process is repeatedM times to produce the population
for use in the next generation.

The algorithm is summarized in Table III. Note that for
implementation purposes, a random drawy from an inverse-
χ2 distribution can be obtained by firstly drawing a sample
z from theχ2 distribution and applyingy = s2/z. The χ2

distribution is also a special case of the gamma distribution
(see [11] for details).

IV. EXPERIMENTAL RESULTS

In this Section we present simulation results for the
BayEDAcG algorithm, using several standard test func-
tions, and for comparison results forUMDAG

c on the same
functions. SinceBayEDAcG and UMDAG

c use the same
(factorised Gaussian) model and data (while differing in the
way inference is performed on the model parameters), we
would expect the two algorithms to produce results that are
similar in a number of respects. Our main aim is to gain
some insight into the behaviour of theBayEDAcG algorithm
rather than attempting to claim state-of-the-art performance
on these problems. Therefore, we make no attempt to tune
the parameters of the algorithms to these problems. The test
functions used are listed in Table IV. While these functions
have some limitations, they are commonly used and sufficient
here for illustrative purposes.

Firstly we consider a simple unimodal problem (the 1-D
Sphere function) to show the experimental convergence of
the algorithm compared toUMDAG

c . For each algorithm,

TABLE IV

TEST FUNCTIONS USED IN THE EXPERIMENTS

Name Function
Sphere fSph(x) =

Pn
i=1 x2

i
−5.12 ≤ xi ≤ 5.12, fSph(x∗) = 0

Rastrigin fRas(x) =
Pn

i=1
(x2

i − 10 cos(2πxi) + 10)
−5 ≤ xi ≤ 5, fRas(x

∗) = 0

Rosenbrock fRos(x) =
Pn−1

i=1
(x2

i − xi+1)2 + (xi − 1)2

−2 ≤ xi ≤ 2, fRos(x
∗) = 0

Griewangk fGri(x) =
Pn

i=1

x2

i
4000

−
Qn

i=1 cos
“

xi√
i

”

+ 1

−600 ≤ xi ≤ 600, fGri(x
∗) = 0

Ackleys fAck(x) = −20 exp
“

−0.2
q

1

30

Pn
i=1

x2
i

”

− exp
`

1

30

Pn
i=1

cos 2πxi

´

+ 20 + e
−15 ≤ xi ≤ 30, fAck(x∗) = 0

0 10 20 30 40 50 60 70 80 90 100

10
−4

10
−3

10
−2

10
−1

10
0

Generations

O
bj

ec
tiv

e
fu

nc
tio

n

UMDA (mean)
UMDA (std)
BayEDA (mean)
BayEDA (std)

Fig. 1. Best-so-far performance curves forBayEDAcG andUMDAG
c on

the 1-D Sphere function. Shown are average performance and (average +
standard deviation) curves.

M = 40 and τ = 0.9. 100 trials were conducted over
100 generations, with results shown as mean and standard
deviations over these trials. Figure 1 shows the performance
of each algorithm as a function of generations (in terms
of best solution value found so far). While the perfor-
mance is fairly similar,BayEDAcG attains a lower value
on average. Progress forUMDAG

c appears to converge after
about 15 generations, compared to around 20 generations for
BayEDAcG. The standard deviations on the curves for each
algorithm are almost identical.

Figures 2 and 3 show the evolution of the model parame-
ters for each algorithm. Note that forBayEDAcG these are
first averaged over theM model parameter samples gener-
ated and used when sampling from the posterior predictive
distribution of each population. Apart from a fluctuation in
standard deviation around generation 5-15, the curves for the
µ parameters are very similar (Figure 2). In Figure 3 however,
we see a slower convergence for theBayEDAcG σ2 estimate
compared to that ofUMDAG

c . This explains the improved
performance ofBayEDAcG in Figure 1. The model sampling

0 10 20 30 40 50 60 70 80 90 100
−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

Generation

M
od

el
 M

ea
n

pa
ra

m
et

er
 v

al
ue

UMDA (mean)
UMDA (std)
BayEDA (mean)
BayEDA (std)

Fig. 2. Evolution of model mean parameter values forBayEDAcG and
UMDAG

c on the 1-D sphere function. Shown are average performance
and (average + standard deviation) curves. ForBayEDAcG the curves are
averages of posterior samples and over runs.

0 10 20 30 40 50 60 70 80 90 100
10

−15

10
−10

10
−5

10
0

Generations

M
od

el
 v

ar
ia

nc
e

pa
ra

m
et

er
 v

al
ue

UMDA (mean)
UMDA (var)
BayEDA (mean)
BayEDA (var)

Fig. 3. Evolution of model variance parameter values forBayEDAcG

andUMDAG
c on the 1-D sphere function. Shown are average performance

and (average + standard deviation) curves. ForBayEDAcG the curves are
averages of posterior samples and standard deviations overruns.

in BayEDAcG introduces a source of variability not present
in UMDAG

c , which increases the search diversity. For this
problem the effect leads to an improvement in performance.

A further illustration of the dynamics of theBayEDAcG

model is shown in Figure 4. For this experiment,M = 40
and τ = 0.95 over 100 generations. The graph shows the
evolution of a single trial run of the BayEDA model on
the 1-D Rastrigin function, in terms of the sampled model
parameter values over generations. The model samples follow
a trajectory with mean values tending towards the location of
the global optimum (x = 0) and variance values converging
towards zero. However, clustering is evident in the points

0

20

40

60

80

100

120

−7−6−5−4−3−2−101

0

5

10

15

20

25

30

35

40

45

50

Model mean parameter value

Generations

M
od

el
 v

ar
ia

nc
e

pa
ra

m
et

er
 v

al
ue

Fig. 4. A plot of the model posterior samples over a single runof
BayEDAcG on the 1-D Rastrigin function. Clustering is evident along the
mean parameter axis and can be related to the structure of theproblem.

on this trajectory, showing that the algorithm spends more
time in certain areas of the search space. For reference, the
1-D Rastrigin function is shown in Figure 5 over the range
explored by the algorithm. Comparing Figures 4 and 5 it can
be seen that the clustering in model samples corresponds to
the local minima of the function.

In the Bayesian framework, model parameter values are
drawn from the model according to their posterior distri-
bution. This fact can offer an explanation for the result
shown in Figure 4. Selection will lead to a representation
of the regions on the 1-D Rastrigin function close to each
local optimum. This will make more likely the relative
probability of Gaussian models with a mean peaked over
a local optimum and a variance in proportion to the size of a
local basin of attraction. As a consequence, models of such
shape and location will tend to appear more frequently in
samples from the posterior distribution. The influence of this
effect will however depend on the test problem and the algo-
rithm parameters. For this experiment, a very soft selection
pressure was used and the initial population was uniform in
the range[−15, 5]. This causes the model to evolve more
slowly over the objective function surface and causes it to
encounter more locally optimal basins of attraction before
locating the region around the global optimum.

Experiments were also conducted on 10-D versions of the
test functions given in Table IV. For each problem, 30 trials
were conducted. Following the experiments in Chapter 8
of [2], we usedM = 2000 andτ = 0.5. ForfSph, runs were
for 100 generations and for all other functions runs were for
200 generations The results are summarized in Table V.

Overall the results show highly similar performance for
the two algorithms.UMDAG

c showed slightly better mean
performance in most cases, although the standard deviation
of the results forBayEDAcG was almost always larger
that of UMDAG

c (possibly a result of the model variability

−7 −6 −5 −4 −3 −2 −1 0 1
0

10

20

30

40

50

60

70

Fig. 5. The 1-D Rastrigin function in over the range covered by the results
in Figure 4.

TABLE V

PERFORMANCERESULTS ON10D VERSIONS OF THE TEST FUNCTIONS.

Function UMDA Mean (Std) BayEDA Mean (Std)

Sphere 9.63E-09 (2.36E-09) 1.18E-08 (2.63E-09)
Rastrigin 7.12E-06 (8.15E-06) 1.56E-05 (2.16E-05)
Rosenbrock 8.21E+01 (2.04E-02) 8.21E+01 (2.41E-02)
Griewangk 7.54E-14 (2.45E-14) 1.08E-13 (2.86E-14)
Ackleys 1.96E-08 (2.75E-09) 2.11E-08 (3.42E-09)

discussed in the 1-D examples above). As mentioned above,
no attempt was made to optimize the values ofM andτ used
in BayEDAcG - a study of the sensitivity of the performance
of the algorithms to the parameter values is outside the
scope of this paper. The global optimum for each problem
was found with high precision, apart from the Rosenbrock
function for which convergence is known to be difficult.

V. RELATED WORK

The literature concerned with the development of opti-
mization techniques is both large and diverse. Optimization
algorithms that construct some kind of statistical model and
use this model to influence the search process can be found
in areas such as Evolutionary Computation, Metaheuristics,
Machine Learning and Engineering Design, as well as in the
fields of stochastic and global optimization.

A. Objective Function Models

A different approach to model-based optimization is to
construct a model using not only selected points visited
during the search, but also the corresponding objective func-
tions values for those points searched. Newton’s method is a
simple and well-known example of this class of techniques,
fitting a local quadratic model at each iteration of the
algorithm and directing the search using the optimum of the
model (Sequential quadratic programming techniques gen-
eralise this idea) [12]. Response surface methodology [13]

also utilizes optimization procedures that fit a low-order
polynomial regression model to the(xti, S(xti) data and use
simple calculus to estimate the optima from the polynomial.
Experimental design techniques are an important part of
response surface approaches.

Stochastic process models of the objective function have
also been widely considered as response surfaces and in
model-based optimization, dating back to an algorithm in-
troduced by Kushner in 1964 based on a 1-D Weiner pro-
cess [14]. Subsequent work includes that of Stuckman [15],
the Bayesian approach to global optimization of Mockus [16]
and the P-algorithm of Zilinskas [17]. In engineering design,
more sophisticated stochastic process models have been
employed as response surfaces for model-based optimization.
In particular, kriging models have received attention [18].
These techniques produce a surrogate model of the objective
function, together with a value for the confidence of the
model at any pointx. Together with information about the
current best solution found, this confidence information is
used to define criteria that indicate the expected utility of
searching future points in the search space [19].

Previous work on model-based optimization can also be
found in artificial intelligence and machine learning. Moore
and Schneider use locally weighted regression to build a
model of the objective function using all points evaluated
during the search [20]. Boyan and Moore propose the STAGE
algorithm [21], which learns an “evaluation function” which
aims to predict the outcome of a local search algorithm. This
evaluation function model is then used to guide future search.

VI. CONCLUSIONS

We have presented a new approach to model fitting in
EDAs based on Bayesian inference, a method which uti-
lizes prior distributions on model parameters and gener-
ates each successive population from the posterior predic-
tive distribution. A simple implementation of this frame-
work, BayEDAcG using a Gaussian model with a non-
informative prior was detailed and experimentally compared
against the frequentist alternative, UMDAG

c . TheBayEDAcG

method outperformed the UMDAGc method on an example
1-dimensional optimization problem. Its performance on five
10-dimensional example problems was overall very similar
to that of UMDAG

c . The differences between the two results
are primarily due to the slightly larger variance of the
BayEDAcG model.

We believe that there is considerable scope for future
work in developing Bayesian techniques in EDAs. While the
BayEDAcG implementation described here is a continuous
univariate model, multivariate models and/or models for
discrete variables exist in the Bayesian literature and should
be readily applicable to EDAs. In principle, Bayesian EDAs
could be developed using many of the other probabilistic
models commonly used in discrete and continuous EDAs
(though some implementations will be more complex than
others). Furthermore, the Bayesian framework opens up the
possibility of utilizing prior distributions in the context of
optimization. Although this paper only considers a simple

noninformative prior over univariate Gaussian model pa-
rameters, informative priors may be useful to incorporate
knowledge about optimization problems (e.g constraints)
in a consistent way, something that is not possible with
EDAs employing maximum-likelihood parameter estimation.
In addition, conjugate priors can be utilized to produce
efficient implementations of Bayesian inference for many
commonly used distributions.

ACKNOWLEDGMENT

The authors would like to thank Dirk Kroese for contribut-
ing to the development of this work and related discussion.
Ian Wood would like to acknowledge the support of the ARC
Center for Complex Dynamic Systems and Control. Jonathan
Keith and George Sofronov would like to acknowledge the
support of an Australian Research Council (ARC) Discovery
Grant (DP0556631) and additionally for JK a National Med-
ical and Health Research Council (NHMRC) project grant
(389892).

REFERENCES

[1] S. Kern, S. D. Müller, N. Hansen, D. Büche, J. Ocenasek,and
P. Koumoutsakos, “Learning probability distributions in continuous
evolutionary algorithms - a comparative review,”Natural Computing,
vol. 3, no. 1, pp. 77–112, 2004.

[2] P. Larrañaga and J. A. Lozano, Eds.,Estimation of Distribution
Algorithms : A New Tool for Evolutionary Computation. Kluwer,
2002.

[3] M. Pelikan, D. E. Goldberg, and F. Lobo, “A survey of optimization by
building and using probabilistic models,”Computational Optimization
and Applications, vol. 21, no. 1, pp. 5–20, 2002.

[4] R. Y. Rubinstein and D. P. Kroese,The Cross-Entropy Method: A
Unified Approach to Combinatorial Optimization, Monte-Carlo Simu-
lation and Machine Learning, ser. Information Science and Statistics.
Springer, 2004.

[5] M. Gallagher and M. Frean, “Population-based continuous optimiza-
tion, probabilistic modelling and mean shift,”Evolutionary Computa-
tion, vol. 13, no. 1, pp. 29–42, 2005.

[6] S. Baluja, “Population-Based Incremental Learning: A method for
integrating genetic search based function optimization and competitive
learning,” School of Computer Science, Carnegie Mellon University,
Tech. Rep. CMU-CS-94-163, 1994.

[7] M. Pelikan, D. E. Goldberg, and E. Cantú-Paz, “BOA: The Bayesian
optimization algorithm,” inProc. Genetic and Evolutionary Compu-
tation Conference (GECCO’99), W. Banzhaf and et al., Eds. San
Francisco, CA: Morgan Kaufmann, 1999, pp. 525–532.

[8] B.-T. Zhang, “A unified Bayesian framework for evolutionary learning
and optimization,” inAdvances in Evolutionary Computing: Theory
and Applications, ser. Natural Computing Series, A. Ghosh and
S. Tsutsui, Eds. Springer, 2003, pp. 393–412.

[9] H. Mühlenbein, “The equation for response to selectionand its use
for prediction,” Evolutionary Computation, vol. 5, pp. 303–346, 1998.

[10] P. Larrañaga, R. Etxeberria, J. A. Lozano, and J. M. Pe˜na, “Optimiza-
tion by learning and simulation of Bayesian and Gaussian networks,”
University of the Basque Country, Spain, Tech. Rep. KZZA-IK-4-99,
1999.

[11] A. Gelman, J. B. Carlin, H. S. Stern, and D. B. Rubin,Bayesian Data
Analysis, 2nd ed. Chapman and Hall/CRC, 2004.

[12] R. Fletcher,Practical methods of optimization, 2nd ed. Chichester,
New York: Wiley, 1987.

[13] G. E. P. Box and N. R. Draper,Empirical model-building and response
surfaces. Wiley, 1987.

[14] H. J. Kushner, “A new method of locating the maximum of an
arbitrary multipeak curve in the presence of noise,”Journal of Basic
Engineering, vol. 86, pp. 97–106, 1964.

[15] B. E. Stuckman, “A global search method for optimizing nonlinear
systems,” IEEE Transactions on Systems, Man, and Cybernetics,
vol. 18, no. 6, pp. 965–977, 1988.

[16] J. Mockus, “Application of Bayesian approach to numerical methods
of global and stochastic optimization,”Journal of Global Optimization,
vol. 4, pp. 347–365, 1994.

[17] A. Žilinskas, “A review of statistical models for global optimization,”
Journal of Global Optimization, vol. 2, pp. 145–153, 1992.

[18] D. R. Jones, “A taxonomy of global optimization methodsbased on
response surfaces,”Journal of Global Optimization, vol. 21, pp. 345–
383, 2001.

[19] M. J. Sasena, P. Papalambros, and P. Goovaerts, “Exploration of
metamodelling sampling criteria for contrained global optimization,”
Engineering Optimization, vol. 34, no. 3, pp. 263–278, 2002.

[20] A. W. Moore and J. Schneider, “Memory-based stochasticoptimiza-
tion,” in Advances in Neural Information Processing Systems, vol. 8,
1996, pp. 1066–1072.

[21] J. Boyan and A. Moore, “Learning evaluation functions to improve
optimization by local search,”Journal of Machine Learning Research,
vol. 1, pp. 77–112, 2000.

