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SUMMARY

Count data with extra zeros are common in many medical applications. The zero-inflated Poisson (ZIP)
regression model is useful to analyse such data. For hierarchical or correlated count data where the
observations are either clustered or represent repeated outcomes from individual subjects, a class of
ZIP mixed regression models may be appropriate. However, the ZIP parameter estimates can be severely
biased if the non-zero counts are overdispersed in relation to the Poisson distribution. In this paper, a score
test is proposed for testing the ZIP mixed regression model against the zero-inflated negative binomial
alternative. Sampling distribution and power of the test statistic are evaluated by simulation studies. The
results show that the test statistic performs satisfactorily under a wide range of conditions. The test
procedure is applied to pancreas disorder length of stay that comprised mainly same-day separations and
simultaneous prolonged hospitalizations. Copyright q 2006 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In many medical applications, the count data encountered contain excess zeros relative to the
Poisson distribution. A popular approach to analyse such data is to use a zero-inflated Poisson
(ZIP) regression model [1]. The ZIP model combines the Poisson distribution with a degenerate
component of point mass at zero. A review of the ZIP methodology can be found in References
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[2, 3]. Often, zero-inflation and dependency are present simultaneously due to the hierarchical
study design or longitudinal data collection procedure. The inherent correlation is common in
medical research where patients are typically nested within hospitals or health regions. Exten-
sions of the ZIP regression model have been developed, in which random effects are incorporated
within the Poisson and binary components of the ZIP model to handle the clustered heterogeneous
counts [4–7]. Recently, a class of multi-level ZIP regression model with random effects is pro-
posed [8]. Model fitting is facilitated using an EM algorithm [9], while variance components are
estimated via residual maximum likelihood estimating equations. Marginal models utilizing gen-
eralized estimating equations have also been suggested as alternatives to the inclusion of random
effects [10, 11].

Prior to application of the standard ZIP model, it is important to assess whether the ZIP
assumption is indeed valid. Score tests for zero-inflation in count data are available in the literature
[12, 13], with extensions in more generalized settings [14, 15] and specific applications such as
disease mapping by parametric bootstrap [16]. Sensitivity of score tests for zero-inflation have also
been considered [17]. For correlated count data, a score test for zero-inflation testing the Poisson
mixed model against its ZIP mixed counterpart is appropriate [18]. The advantage of the score
statistic lies in its computational convenience; only a fit of the null Poisson mixed regression model
is required. The test procedure has been applied to analyse recurrent urinary track infections in
elderly women, where the correlated data collected from a retrospective cohort study exhibit a
preponderance of zero counts [18].

In practice, count data are often overdispersed so that alternative distributions such as the zero-
inflated negative binomial (ZINB) may be more appropriate than the ZIP. Moreover, it has been
established that the ZIP parameter estimates can be inconsistent in the event of severe overdispersion
for the non-zero counts [19]. Consequently, Ridout, Hinde and Demetrio provided a score test for
testing a ZIP regression model against a ZINB alternative, based on a general parameterization
of the negative binomial distribution [19]. However, no equivalent test is available for correlated
count data exhibiting zero-inflation as well as overdispersion.

In this paper, a score test is presented for assessing overdispersion in the ZIP mixed regression
model against a ZINB mixed alternative. The development parallels that of Ridout et al. [19].
After briefly reviewing the ZIP mixed and ZINB mixed regression models in Section 2, the score
test for overdispersion and corresponding hypotheses are specified in Section 3. The sampling
distribution of the score test statistic and its power properties are investigated via simulation
experiments in Section 4. To illustrate the test procedure, an example on pancreas disorder length
of stay is provided in Section 5, where same-day separations are becoming more prevalent and the
heterogeneous count data collected from the same hospital are correlated. Finally, some concluding
remarks are given in Section 6.

2. ZIP AND ZINB MIXED REGRESSION MODELS

Let Y denote the count variable of interest. Suppose the j th response variable from the i th cluster
follows a ZIP distribution:

P(Yi j = yi j ) =
⎧⎨
⎩

�i j + (1 − �i j ) exp(−�i j ), yi j = 0

(1 − �i j ) exp(−�i j )�
yi j
i j /yi j !, yi j>0
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i = 1, . . . ,m and j = 1, . . . , ni , where m is the number of clusters and ni is the number of
observations within cluster i . The mean and variance of the ZIP random variables are given by:

E(Yi j ) = (1 − �i j )�i j

var(Yi j ) = (1 − �i j )�i j (1 + �i j�i j )

In the regression setting, both the mean �i j and zero proportion �i j parameters are related to the
covariate vectors xi j and zi j , respectively. Moreover, responses within the same cluster/subject
are likely to be correlated. To accommodate the inherent correlation, random effects ui and vi are
incorporated in the linear predictors �i j for the Poisson part and �i j for the zero mixing part. The
ZIP mixed regression model is thus [6]:

�i j = log(�i j ) = x′
i j� + ui

�i j = log

(
�i j

1 − �i j

)
= z′

i j� + vi

where � and � are the corresponding p× 1 and q × 1 vector of regression coefficients. The random
effects ui and vi are assumed to be independent and normally distributed with mean 0 and variance
�2u and �2v , respectively.

On the other hand, the ZINB model features the modelling of the observed overdispersion via
the negative binomial component besides accounting for the excess zeros. The count variable Yi j
follows a ZINB distribution of the form:

P(Yi j = yi j ) =

⎧⎪⎪⎨
⎪⎪⎩

�i j + (1 − �i j )(1 + ��i j )
−1/�, yi j = 0

(1 − �i j )
�(yi j + (1/�))

yi j !�(1/�)
(1 + ��i j )

−1/�
(
1 + 1

��i j

)−yi j
, yi j>0

where �>0 is a dispersion parameter. The mean and variance of Yi j are:

E(Yi j ) = (1 − �i j )�i j

var(Yi j ) = (1 − �i j )�i j (1 + �i j�i j + ��i j )

Note that the ZINB distribution reduces to the ZIP distribution in the limit � → 0.
Analogous to the ZIP mixed regression model, a ZINB mixed regression model can be defined

[20]. For simplicity of presentation, let N = ∑m
i = 1 ni , u = (u1, . . . , um)′, v = (v1, . . . , vm)′ be

random effects vectors; � = (�11, . . . , �1n1, . . . , �m1, . . . , �mnm )′, � = (�11, . . . , �1n1, . . . , �m1, . . . ,

�mnm )′. The N × 1 vectors � and � are defined in a similar manner. Also, let the N × p, N × q
and N ×m design matrices be partitioned as:

X = [x11, . . . , x1n1, . . . , xm1, . . . , xmnm ]′

Z = [z11, . . . , z1n1, . . . , zm1, . . . , zmnm ]′

W = diag[1n1, 1n2 . . . , 1nm ] = [w11, . . . ,w1n1, . . . ,wm1, . . . ,wmnm ]′
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where 1n denotes an n × 1 vector of 1. Then the ZINB mixed regression model can be expressed
in matrix notation as:

log(�) = � =X� + Wu

log

(
�

1 − �

)
= � =Z� + Wv

Based on the generalized linear mixed model formulation [21], the residual maximum likelihood
(REML) estimates of the ZINB mixed regression model parameters can be obtained. The approach
commences with the best linear unbiased prediction-type log-likelihood l = l1 + l2, where l1 and
l2 represent the respective contribution of the fixed and random effects:

l1 =∑
i, j

I{yi j = 0} log(�i j + (1 − �i j )(1 + ��i j )
−1/�) + I{yi j>0}

[
log(1 − �i j ) − log(yi j !)

+ log

(
�

(
yi j + 1

�

))
− log

(
�

(
1

�

))
−
(
yi j + 1

�

)
log(1 + ��i j ) + yi j log(��i j )

]

l2 = −1

2
[m log(2	�2u) + �−2

u u′u + m log(2	�2v) + �−2
v v′v]

with indicator function I(·) being 1 if the specified condition is satisfied and 0 otherwise. Here l
can be viewed as a penalized log-likelihood function with l2 being the penalty for the ZINB log-
likelihood l1 when the random effects are conditionally fixed. Let the parameter vector of interest be
h= (�, �, �, u, v)′. With suitable initial values, the REML estimates of h can be obtained iteratively
by maximizing l, via an EM algorithm to ensure convergence. The variance component estimates
for �2u and �2v are then computed from estimating equations involving h; details of the estimation
procedure can be found in Reference [20]. The ZIP mixed regression model may be considered
as a special case of the ZINB mixed regression model when � → 0, the corresponding parameter
estimates are obtained in a similar manner via an EM algorithm and associated REML estimating
equations [6].

3. SCORE TEST FOR OVERDISPERSION

To test for overdispersion in the ZIP mixed regression model against the ZINB mixed regression
model is equivalent to testing the null hypothesis H0 : � = 0 against the alternative H1 : �>0. Our
development of the score test parallels that of Ridout et al. for independent data [19]. Derivation
of the score test requires the first- and second-order derivatives of l with respective to �, �, �, u
and v, and then evaluated at REML estimates of the ZIP mixed regression model, i.e. under the
null hypothesis. Details of the derivatives involved are given in Appendix A.

First, the efficient score S is obtained by evaluating the derivative of l with respective to � at
the REML estimates �̂, �̂, û and v̂ of the ZIP mixed regression model:

S = 1

2

∑
i, j

⎧⎨
⎩[(yi j − �̂i j )

2 − yi j ] − I(yi j = 0)
�̂
2
i j �̂i j

p̂0,i j

⎫⎬
⎭
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where the probability p̂0,i j = �̂i j+(1−�̂i j ) exp(−�̂i j ). The derivation of this score S is in principle
the same as the score statistic Z2 proposed by Deng and Paul [22] which does not involve random
effects. In the following, all expectations are taken under H0 : � = 0 and conditional on random
effects u and v. Based on the second derivatives of l evaluated at the REML estimates, the expected
Fisher information matrix is partitioned as

J= E

(
− �2l

�h�h′

)
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

J�� J��′ J��′ J�u′ J�v′

J��

J��

J�u

J�v

J(�,�,u,v)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

with

J(�,�,u,v) =

⎡
⎢⎢⎢⎢⎢⎣

X′ 0

0 Z′

W′ 0

0 W′

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣
E

(
− �2l

����′

)
E

(
− �2l

����′

)

E

(
− �2l

����′

)
E

(
− �2l

����′

)
⎤
⎥⎥⎥⎥⎥⎦
[
X 0 W 0

0 Z 0 W

]

+

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 0

0 0 0 0

0 0 �̂−2
u Im 0

0 0 0 �̂−2
v Im

⎤
⎥⎥⎥⎥⎥⎥⎦

where Im denotes an m ×m identity matrix. Here,

E

(
− �2l

����′

)
= diag[�̂{(1 − �̂) − �̂�̂(1 − �̂/ p̂0)}]

E

(
− �2l

����′

)
= diag[−�̂2

(1/ p̂0 − 1)]

E

(
− �2l

����′

)
= diag[−�̂�̂(1 − �̂/ p̂0)]

and p̂0 is a vector with elements p̂0,i j . Typical entries of J are as follows:

J�� = 1

2

∑
i, j

{
(1 − �̂i j )�̂

2
i j − 1

4
�̂i j �̂

4
i j

(
1 − �̂i j

p̂o,i j

)}
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J�� = 1

2

∑
i, j

{
�̂
3
i j �̂i j

(
1 − �̂i j

p̂o,i j

)
xi j

}

J�� = 1

2

∑
i, j

{
�̂
2
i j �̂i j

(
1 − �̂i j

p̂o,i j

)
zi j

}

J�u = 1

2

∑
i, j

{
�̂
3
i j �̂i j

(
1 − �̂i j

p̂o,i j

)
wi j

}

J�v = 1

2

∑
i, j

{
�̂
2
i j �̂i j

(
1 − �̂i j

p̂o,i j

)
wi j

}

The score statistic for testing overdispersion in the ZIP mixed regression model is then

T = S
√
J ��

where J �� is the upper left-hand entry of the inverse information matrix J−1 evaluated at the
REML estimates under the null hypothesis. A one-sided test is appropriate because large positive
values of T will provide evidence against the null hypothesis. Under H0, the test statistic T is
expected to have an asymptotic standard normal distribution. The finite sample properties of T are
investigated by simulation in the next section. Upon confirmation of overdispersion, the alternative
ZINB mixed regression model may be considered for fitting the heterogeneous and correlated
count data.

4. SAMPLING DISTRIBUTION AND EMPIRICAL POWER

A simulation study is conducted to examine the sampling distribution and the empirical power of
the score statistic T under finite sampling situations. The working model under the null hypothesis
is taken to be a ZIP mixed regression model with linear predictors:

log(�i j ) = �0 + �1xi j + ui

log

(
�i j

1 − �i j

)
= �0 + �1zi j + vi

for i = 1, . . . ,m; j = 1, . . . , n. We set �0 = 2.5, �1 = − 1.0, �0 = − 1.0, and �1 = 0.5. Covariates
xi j and zi j are generated from a uniform (0,1) distribution whereas the random effects ui and
vi are assumed to be normally distributed with mean zero and standard deviation 0.2 and 0.1,
respectively. In the simulation experiments, m = 10, 20 and 40 clusters are used with n = 10, 20
and 40 observations per cluster.

The empirical ordered T statistics based on 1000 replications from the above working model
are compared with the corresponding quantiles of the standard normal distribution. The Q–Q plots,
presented in Figure 1, show that the sampling distribution of T follows closely the asymptotic

Copyright q 2006 John Wiley & Sons, Ltd. Statist. Med. 2007; 26:1608–1622
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Figure 1. Q–Q plots of ordered score test statistics against standard normal quantiles based on 1000
replications generated from the ZIP mixed regression model.

N(0, 1) distribution for most of the settings chosen. As expected, the approximation improves with
more observations per cluster and a larger number of clusters.

We next investigate the power of T for detecting overdispersion. Performance of the test proce-
dure is evaluated under the ZINB mixed regression model, with linear predictors having the same
specifications and associated parameter values as defined previously. The empirical power of the
test (for given �) is calculated using Z1−
, which denote the estimated upper tail probabilities of
T at the (1 − 
) per cent percentile of N(0, 1) under H1 : �>0, i.e.

P(T>Z1−
) ≈
1000∑
k=1

I [Tk>Z1−
|H1]/1000

where Tk is the observed score statistic at the kth replicated trial, k = 1, . . . , 1000. Both small
and large degrees of overdispersion, � = 0.05, 0.10, 0.20 and 0.40, are considered at nominal
significance levels 0.1, 0.05 and 0.01.

The results in Table I demonstrate that the proposed score test is reasonably powerful in rejecting
the null hypothesis under the alternative H1 : �>0. As expected, by increasing the sample size in
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SCORE TEST FOR OVERDISPERSION 1615

Table I. Empirical power of the score test based on 1000 replications generated from the ZINB mixed
regression model.

Significance level 
 Significance level 


m n 0.10 0.05 0.01 0.10 0.05 0.01

�= 0.05 �= 0.10
10 10 0.237 0.155 0.066 0.645 0.559 0.401

20 0.341 0.256 0.126 0.879 0.834 0.695
40 0.879 0.821 0.664 0.996 0.993 0.972

20 10 0.531 0.424 0.259 0.947 0.911 0.823
20 0.824 0.750 0.578 1.000 1.000 0.999
40 0.993 0.985 0.934 1.000 1.000 1.000

40 10 0.605 0.511 0.323 0.999 0.998 0.996
20 0.986 0.967 0.899 1.000 1.000 1.000
40 1.000 1.000 1.000 1.000 1.000 1.000

�= 0.20 �= 0.40
10 10 0.999 0.997 0.987 1.000 0.999 0.998

20 1.000 0.997 0.990 1.000 1.000 1.000
40 1.000 1.000 1.000 1.000 1.000 1.000

20 10 1.000 1.000 0.999 1.000 1.000 1.000
20 1.000 1.000 1.000 1.000 1.000 1.000
40 1.000 1.000 1.000 1.000 1.000 1.000

40 10 1.000 1.000 1.000 1.000 1.000 1.000
20 1.000 1.000 1.000 1.000 1.000 1.000
40 1.000 1.000 1.000 1.000 1.000 1.000

terms of more clusters or greater number of observations per cluster, a more powerful test can be
produced. The empirical power also improves when the degree of overdispersion increases.

5. APPLICATION

We consider the analysis of a set of pancreas disorder inpatient length of stay (LOS) data for
a group of 261 patients hospitalized in Western Australia between 1998 and 1999 [20]. Pan-
creas disorder encompasses acute pancreatitis, chronic pancreatitis and other minor classifica-
tions. The empirical LOS frequency distribution exhibits zero-inflation and simultaneous overdis-
persion, owing to the underlying disease characteristics and available treatment options. The
45 patients (17 per cent) with same-day separations constituted the zero counts, while a few
patients who underwent endoscopic surgery sustained prolonged LOS. In addition to LOS, infor-
mation on clinical- and patient-related characteristics was extracted from the hospital discharge
database. Available covariates were: age (in years), gender (0= female, 1=male), marital status
(0=married, 1= single/others), Aboriginality (0= non-aboriginal, 1= aboriginal), payment type
(0= public, 1= private/others), admission status (0= elective, 1= emergency), treatment classi-
fication (0=GP/general medicine/gastroenterology, 1= general surgery), and number of diag-
noses. For this sample of patients from 36 public hospitals, their average age was 36 years,
35 per cent were female, 48 per cent were married, while 32 per cent were of aboriginal de-
scent. Although emergency admission accounted for the majority of cases (81 per cent), only 12

Copyright q 2006 John Wiley & Sons, Ltd. Statist. Med. 2007; 26:1608–1622
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Table II. Comparison of goodness-of-fit statistics between ZIP and ZINB
mixed regression models fitted to the pancreas disorder LOS data.

Criteria ZIP mixed model ZINB mixed model

Log-likelihood −491.549 −487.282
AIC 1005.098 996.564
BIC 1044.308 1035.774
Pearson statistic 331.963 261.690
Degree of freedom 237 236

per cent of patients had private medical insurance coverage and 36 per cent involved surgical
procedures.

Results of fitting various models, including the ZINB mixed regression model, are given by Yau
et al. [20]. In this study, hospital effects are treated as random because the 36 hospitals contribute
only a subset of the hospital population in Western Australia. The analyses suggested that the
ZINB mixed regression model accommodating the inter-hospital variations can lead to substantial
improvement in overall goodness-of-fit relative to the unadjusted ZINB model. However, it remains
to confirm whether the apparent overdispersion is indeed significant among the non-zero counts.
The score test proposed in this paper aims to detect the possible overdispersion among the non-zero
counts.

Ignoring random hospital effects, the score test statistic of Ridout et al. [19] is 5.56, which
indicates that the standard ZIP regression model is unsuitable for these data. Moreover, the proposed
score test statistic T = 4.19 is very significant (p-value <0.001), providing strong evidence of
overdispersion in the ZIP mixed regression model. Results of comparing the ZIP and ZINB mixed
regression model fits are summarized in Table II. We found that the ZINB mixed regression
model is preferable according to all four goodness-of-fit criteria considered. Furthermore, the scale
parameter estimate �̂ = 0.103 is large relative to its standard error of 0.034, confirming significant
overdispersion in these clustered LOS counts with extra zeros.

To further confirm the overdispersion among the non-zero counts, half-normal plots displaying
the Pearson residuals versus half-normal scores, with simulated envelopes added for the ZIP and
ZINB mixed regression models [23] are given in Figure 2. It is clear from the plots that the Pearson
residuals are lying within the envelope for ZINB but not for ZIP mixed regression model, further
confirming the presence of overdispersion among the non-zero.

6. CONCLUDING REMARKS

A score statistic is proposed for testing overdispersion in correlated count data with extra zeros.
Unlike the likelihood ratio test, the advantage of the score statistic lies in its computational
convenience, as it does not require the more complex ZINB mixed regression model to be fitted.
The procedure has been implemented as an S-Plus macro available from the authors. Although
the numerical example on pancreas disorder LOS is concerned with clustered data, the score test
procedure is also applicable to longitudinal count data, where repeated measures of the variables
of interest are collected over time.

Copyright q 2006 John Wiley & Sons, Ltd. Statist. Med. 2007; 26:1608–1622
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Figure 2. Half-normal plots of Pearson residuals versus half-normal scores, with simulated envelopes
added, for the ZIP and ZINB mixed regression models fitted to the pancreas disorder LOS data.

Despite the paucity of asymptotic inferences for mixed regression models, results of our simula-
tion study show that the proposed test has high power and the score statistic follows approximately
a standard normal distribution, even in small sample settings. From a practical viewpoint, the
nominal significance level of the observed score statistic enables the assessment of overdispersion
for correlated count data. In the presence of simultaneous zero-inflation and overdispersion, the fit
of the alternative ZINB mixed regression model is recommended, and comparisons should be made
with the corresponding ZIP counterpart. On the other hand, if the score test gives no indication
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of lack of fit, inferences based on the ZIP mixed regression model can be made with increased
confidence, analogous to the independent data situation.

APPENDIX A

The derivation of the efficient score S and the Fisher information matrix J in Section 3 is given
here, which is in principle similar to that presented in Reference [22].

Note that

�(y + 1/�)

�(1/�)
= �−y

y∏
k=1

(�y − �k + 1)

We write the fixed effect contribution of the log-likelihood l as l1 =∑i, j (l1i j,1 + l1i j,2), where

l1i j,1 = I{yi j = 0} log[�i j + (1− �i j )(1+ ��i j )−1/�] and l1i j,2 = I{yi j>0}[log(1− �i j ) − log(yi j !) +∑yi j
k=1log(�yi j − �k + 1) − (yi j + 1/�) log(1 + ��i j ) + yi j log(�i j )]. Then,

�l1i j,1
��

= I{yi j = 0}
(1 − �i j )(1 + ��i j )−1/�

�i j + (1 − �i j )(1 + ��i j )−1/�

[
log(1 + ��i j )

�2
− �i j

�(1 + ��i j )

]

and

�l1i j,2
��

= I{yi j>0}
[∑

k

yi j − k

�yi j − �k + 1
+ log(1 + ��i j )

�2
− (yi j + 1/�)�i j

1 + ��i j

]

Let p0,i j = P(y = 0|H0) =�i j + (1 − �i j )e−�i j . Note that lim�→0(1 + ��i j )−1/� = e−�i j and

lim
�→0

[
log(1 + ��i j )

�2
− �i j

�(1 + ��i j )

]
= �2i j

2

using L’Hospital’s rule. It follows that the first-order derivative of the log-likelihood l with respect
to � and evaluated under the null hypothesis

�l
��

∣∣∣∣
�= 0

=∑
i, j

�l1i j,1
��

∣∣∣∣
�= 0

+∑
i, j

�l1i j,2
��

∣∣∣∣
�= 0

= 1

2

∑
i, j

{
[(yi j − �i j )

2 − yi j ] − I{yi j = 0}�2i j
�i j

p0,i j

}

which gives the efficient score.
Next, to obtain elements of the Fisher information matrix J, the expected negative second-order

derivatives of l with respect to any two of parameters �, �, �, u and v are derived as follows.
Similar to the first-order derivatives above, L’Hospital’s rule is frequently applied in evaluating
the quantities under the null hypothesis.

�2l1i j,1
��2

= I{yi j = 0}(1 − �i j )(1 + ��i j )−1/�

[�i j + (1 − �i j )(1 + ��i j )−1/�]2

×
[
(1 − �i j )(1 + ��i j )

−1/�
(
log(1 + ��i j )

�2
− �i j

1 + ��i j

)
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−(�i j + (1 − �i j )(1 + ��i j )
−1/�)

{(
log(1 + ��i j )

�2
− �i j

1 + ��i j

)2

−2 log(1 + ��i j )

�3
+ �i j (2 + 3��i j )

�2(1 + ��i j )2

}]

�2l1i j,2
��2

= I{yi j>0}

[
yi j∑
k=1

−(yi j − k)2

(�yi j − �k + 1)2
− 2 log(1 + ��i j )

�3

+ 2�i j
�2(1 + ��i j )

+ (yi j + 1/�)�2i j
(1 + ��i j )2

]

�2l1i j,1
����i j

∣∣∣∣∣
�= 0

= I{yi j = 0}
p0,i j

[
−�2i j

2
(1 − �i j )e

−�i j + (1 − �i j )�i je
−�i j + �2i j

2p0,i j
(1 − �i j )

2e−2�i j

]

�2l1i j,2
����i j

∣∣∣∣∣
�= 0

= I{yi j>0}(�i j − yi j )

(1 + ��i j )2
,

�2l1i j,1
����i j

∣∣∣∣∣
�= 0

= − I{yi j = 0}
p20,i j

�2i j
2
e−�i j ,

�2l1i j,2
����i j

= 0

�2l1i j,1
��2i j

∣∣∣∣∣
�= 0

= I{yi j = 0}
p0,i j

[
(1 − �i j )e

−�i j − 1

p0,i j
(1 − �i j )

2e−2�i j

]

�2l1i j,2
��2i j

∣∣∣∣∣
�= 0

= −I{yi j>0}
yi j

�2i j
,

�2l1i j,1
��2

i j

∣∣∣∣∣
�= 0

= − I{yi j = 0}
p20,i j

(1 − e−�i j )2

�2l1i j,2
��2

i j

∣∣∣∣∣
�= 0

= − I{yi j>0}
(1 − �i j )2

,
�2l1i j,1

��i j��i j

∣∣∣∣∣
�= 0

= I{yi j = 0}e−�i j

p20,i j

and

�2l1i j,2
��i j��i j

= 0

Since the response variable yi j follows a ZIP distribution under H0 : � = 0, the first three moments
of yi j conditional on random effects are given by:

E(yi j ) = (1 − �i j )�i j , E(y2i j ) = (1 − �i j )�i j (1 + �i j ), E(y3i j ) = (1 − �i j )�i j (1 + 3�i j + �3i j )

Also note that E(I{yi j>0}) = (1−�i j )(1− e−�i j ), E(I{yi j = 0}) = p0,i j , ��i j/�� = �i jxi j , ��i j/�u =
�i jwi j , ��i j/�� =�i j (1 − �i j )zi j and ��i j/�v = �i j (1 − �i j )wi j . Expectations of negative
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second-order derivatives of l taken under H0 : � = 0 conditional on random effects are therefore
obtained:

E
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− �2l

��2

)
= E
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E

(
− �2l

�v�v′

)
= E

(
−∑

i, j

��i j

�v

(
�2l1i j,1
��2

i j

+ �2l1i j,2
��2

i j

)
��i j
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�v�v′

)

=∑
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�2
i j

(
1
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)
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where Im denotes an m × m identity matrix.

ACKNOWLEDGEMENTS

The authors would like to thank the reviewer for helpful comments. This research is supported by grants
from the Australian Research Council and the Research Grants Council of Hong Kong. The authors are
grateful to the Health Information Centre, Department of Health, Western Australia, for provision of the
pancreas disorder length of stay data.

REFERENCES

1. Lambert D. Zero-inflated Poisson regression, with an application to defects in manufacturing. Technometrics
1992; 34:1–14.
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