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Executive Summary 
 

Traditionally static models have been used to develop strategies for the quantification of 
petroleum resources and other engineering processes. Such models are used to quantify 
uncertainty in output given limited input information, such as limited subsurface information. 
Historically these techniques have incorporated Monte-Carlo simulations—multiple 
repetitions of the simulation using randomly chosen values for input variables. However, 
depending on the dimension of the ‘sample space’, accuracy comes at a cost-- a very large 
numbers of simulations.  

More recently in [Xiu et .al. (2003), Sarma et. al. (2011)] Polynomial Chaos, PC, expansion has 
been suggested as a technique to reduce the number of simulations required to quantify 
uncertainty. Polynomial Chaos has its origins in an article by Wiener [Wiener, (1938)]. 

The current project is tasked with assessing the suitability of PC for determining uncertainties 
in static models that assess flow behaviour of reservoirs and uncertainty in reservoir volumes. 
The main thrust is the effective upscaling of reservoir parameters. 
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1. Stage 1 - Outcomes 
 

1.1 Outcomes 
We have: 

• Established a research team with expertise to match Stage 1 tasks, including  
o S Tyson, D Donovan, B Thompson, S Lynch, M Tas; 

• Completed a comprehensive literature review of the theory of Polynomial Chaos. 
• Developed pilot software for implementation and testing of the theory; 
• Developed an extensive data base of central publications in the area; 
• Completed a review of existing applications of Polynomial Chaos across engineering 

and geoscience. Including applications in the modelling of-- stress testing, 
groundwater contamination, computational fluid dynamics, vortex induced vibration, 
reservoir quantification, mechanical components testing, power loss analysis, fault 
tolerance and sensitivity testing; 

• Reviewed and summarized the supporting mathematical theory1; 
• Implemented and reproduced results of Polynomial Chaos for basic functions and 

models (predator/prey).  
• Presented initial findings on Polynomial Chaos and Experimental Design to industry 

representatives; 
• Published an article on quantification of uncertainty within the framework of 

experimental design, and another publication in preparation. 

1.2 Looking Ahead 
The next phase of this project will implement Polynomial Chaos on a range of problems, 
including: 

- Determining most likely porosity given single flow data for ground water. 
- Determining a 2 phase flow regime for subsurface reservoirs. 

• The next deliverable is code to implement non-intrusive Polynomial Chaos for a 
variety of modelling scenarios to be delivered on 1/05/2016. This will be used to 
demonstrate the versatility of non-intrusive Polynomial Chaos. 

• Stage 2 is anticipated to be completed on 1/05/2016.  
• At the end of Stage 2 a decision whether to develop a Petrel plug-in will be made.  
• The overall project is due to complete on 31/12/2016. 

 

  

                                                           
1 See Appendix B for a rigorous discussion of the theory. 
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A plot of PCEs of varying degree using a Hermite 
Polynomial basis to approximate a periodic function. 

2. Polynomial Chaos Expansion 
 

2.1 Overview 
Uncertainty quantification in modelling processes is multifaceted including: 

1. Estimation of uncertainty in model inputs; 
2. Propagation of uncertainty of inputs to model outputs; 
3. Estimation of uncertainty in model outputs. 

Historically, Monte Carlo methods have been widely applied as a stochastic technique that 
uses randomness in the input variables to model uncertainty in the outputs. It involves 
repeated simulations based on pseudo-random inputs to generate a set of model outputs.  
However the required number of simulations to achieve acceptable accuracy can be 
prohibitive. Thus the challenge is to develop efficient and effective techniques for harnessing 
this random process while still successfully capturing the uncertainty in the input parameters.  

Polynomial Chaos is a relatively new stochastic method that can capture uncertainty in 
physical input parameters 
through a basis of polynomials 
that propagate this 
uncertainty to model outputs 
with a limited number of 
simulations. 

Thus Polynomial Chaos, PC, 
allows for uncertainty 
quantification of input 
parameters and response 
outputs within a probabilistic 
framework. This framework 
allows for the physical 
characteristics, such as the 
topology and geometry of the 
region, or substance variation and 
impurities, to be incorporated into the system.  

The central technique of Polynomial Chaos is the use of orthogonal polynomials as a basis for 
the fitting of response outputs based on a probabilistic data set. This data set may be the 
result of some experiment or simulation for which we want to fit a response surface, or 
alternatively the data may be instances of uncertain input values to variables within a model 
or simulation. 
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A plot of a function of a random variable for which 
the beta point is around the value 3. Two PCEs are 
also plotted, one created from a distribution of 
mean 0 and one from a distribution with mean 3. 
Note that the latter is more accurate around the 
beta point. 

2.2 Advantages and Disadvantages 
Advantages of Polynomial Chaos: 

• Fast and efficient; 
• Different probability distributions can be assigned to input parameters; 
• A spectral representation for the random process in terms of orthogonal basis 

functions, thus simplifying implementation; 
• Reduced computation cost significantly when compared to brute force methods such 

as Monte-Carlo simulations; 
• Easy access to the statistics of the random inputs including moments and the 

probability density function, providing an expansion where the zero-index term 
contains the solution mean; 

• Sensitivity to the chosen probability distribution and thus the variability in parameters 
and propagates this effect through the model to the response. 

 
Disadvantages of Polynomial Chaos: 

• Non-normal random input distributions must be treated with care. Generalised 
polynomial chaos and the Askey scheme are techniques suggested to increase rate of 
convergence [Choi et. al. (2004)] or transformation techniques [Tatang (1995)]. 

• Convergence domains must be studied with care for both smooth and non-smooth 
outputs [Crestaux et.al. (2009)]. 

• PC does not quantify the approximation error as a component of uncertainty [O’Hagan 
(2013) p. 10]. 

• Changing the input distribution could require the output strengths to be recomputed 
and also the convergence and truncation parameter to be recomputed [O’Hagan 
(2013) p. 15].   

2.3 Variation on the Basic Techniques 

In many physical situations the 
study is focussed on failure or 
extreme probabilities rather 
than determining the entire 
distribution of the response 
surface. For instance we may be 
interested in the input values for 
which the output responses fall 
below a certain threshold. In 
these instances the focus is on 
estimating response surfaces for 
inputs with small probability. 
Here the implementation of PC is 
focussed on the tail probabilities 
rather than being centred on the 
mean.  
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The literature contains a number of variations to PC proposed for precisely these situations, 
namely shifted PC and windowed PC [Paffrath et. al. (2007)].  

In shifted PC the probability distribution is shifted to coincide with points of largest failure 
probability, or ‘beta points'. The theory is that better estimates on failure probabilities will be 
achieved at the beta point if the error in a PC expansion minimised with respect to that point. 

Windowed PC first determines the beta point and then chooses a neighbourhood or `window' 
about that point over which the approximation will be taken. So we truncate and renormalise 
the distribution to obtain a better resolution close to the beta point. The down side is that the 
approximation will now contain absolutely no information outside of the chosen window.  

2.4 Future Directions 
• List of appropriate test models, including  

o multidimensional groundwater flows and generalization of code to 
multidimensional modelling scenarios; 

o reservoir production optimization; 
• Document unit tests and acceptance protocols; 
• Define calibration procedures; 
• Validate workflows, including 

o  implementation of PC in conjunction with closed-loop reservoir management 
and history matching; 

• Generalization of code and workflows to multidimensional modelling scenarios; 
• Compare and contrast PC with other techniques such as quasi-Monte Carlo and 

stochastic collocation. 
• Develop Petrel plug-in for PC; 
• Stage 2: presentation to technical working group; 
• Final Report and Presentation to Technical Working Group. 

3. A Brief Review of the Theory 

3.1 Principle Ideas 
To explain the concept of PC we will restrict our discussion to a model with 2 input variables 
and so in 3- dimensional space. The inputs will be denoted x and y and the outputs z=f(x,y). It 
will be assumed that a number of sample points 

(𝑥1,𝑦1), (𝑥2,𝑦2), … , (𝑥𝑛,𝑦𝑛) 

are chosen as input to the model giving output values 

𝑧1 = 𝑋(𝑥1,𝑦1),   𝑧2 = 𝑋(𝑥2,𝑦2)  , … , 𝑧𝑛 = 𝑋(𝑥𝑛, 𝑦𝑛) 

The initial goal is to fit a response surface to the values 𝑧1, 𝑧2, …, 𝑧𝑛. Thus we wish to identify 
a suitable function X that approximates the response distribution.  
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Now going back to the PC, we want to identify a function X which approximates the output 
given input 

(𝑥1,𝑦1), (𝑥2,𝑦2)  , … , (𝑥𝑛,𝑦𝑛). 

That is, approximates  

𝑋(𝑥1,𝑦1),𝑋(𝑥2,𝑦2), … ,𝑋(𝑥𝑛,𝑦𝑛). 

More correctly we want to identify orthogonal polynomials 𝜙1,𝜙2, … ,𝜙𝑞and coefficients 
𝑤1,𝑤2, … ,𝑤𝑞 such that for all sample points (𝑥𝑖, 𝑦𝑖),   

𝑋 = 𝑥[1,0,0] + 𝑦[0,1,0] + 𝑧[0,0,1], 𝑥, 𝑦, 𝑧 ∈ ℝ. 

[1,0,0], [0,1,0], [0,0,1]. 

[1,0,0]. [0,1,0] = 1.0 + 0.1 + 0.0 = 0, 

 [1,0,0]. [0,0,1] = 1.0 + 0.0 + 0.1 = 0,  

𝑥 = 𝑋. [1,0,0]. 

To explain the basic theory of PC we digress and give an analogy to aid understanding. 

Take any point X=(x,y,z) in 3-dimensional space. This point can be written as 

That is, the point X can be written as a linear combination of the three basis vectors 

In 3-dimensional space these three vectors are at right angles to each other and are said to 
be orthogonal to each other; that is, 

[0,1,0]. [0,0,1] = 0.0 + 1.0 + 0.1 = 0. 

So, for instance, we can solve directly for x by using 

This orthogonality property significantly reduces computation. 

 

In general we want to find a function that  

can be used to approximate the surface  

passing through the sample points.  
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𝑋(𝑥𝑖,𝑦𝑖) ≈ 𝑤1𝜙1(𝑥𝑖,𝑦𝑖) + 𝑤2𝜙2(𝑥𝑖,𝑦𝑖) + ⋯+ 𝑤𝑞𝜙𝑞(𝑥𝑖,𝑦𝑖) 

Here distinct polynomials 𝜙𝑗 and 𝜙𝑘 are orthogonal if the expected value of the product is 
zero; that is,  

𝔼�𝜙𝑗  𝜙𝑘� = �𝜙𝑗(𝜖)𝜙𝑘(𝜖)𝑝(𝜖)𝑑𝑑 = 0,  

where p is the probability density function for the random variable 𝜖.  The theory tells us that 
generally the coefficients 𝑤1,𝑤2, … ,𝑤𝑞 can be evaluated as 

𝑤𝑘 =
𝔼(𝜙𝑘 𝑋)
𝔼(𝜙𝑘 𝜙𝑘) =

∫𝜙𝑘(𝜖)𝑋(𝜖)𝑝(𝜖)𝑑𝑑
∫𝜙𝑘(𝜖)𝜙𝑘(𝜖)𝑝(𝜖)𝑑𝑑

. 

In this way the orthogonal polynomials “play nicely together” and reduce the necessary 
computation.  

In addition, we want the model to capture the uncertainty and variability in the sample points 
and so we match the set of orthogonal polynomials to the underlying probability distribution. 
In particular, if the sample points are 

• uniformly random variables we use Legendre polynomials; 
• standard normal variables we use Hermite polynomials; 
• exponential random variables we use Laguerre polynomials. 

 
The mathematical theory behind Polynomial Chaos is one technique that allows us to achieve 
this with reduced costs.  

  Higher degree PCEs approximate the underlying 
distribution more accurately. 
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An extensive bibliography is included, with a more detailed discussion of some central papers 
in this review provided below.2 

3.2 Understanding Uncertainty 
The quantification of uncertainty, particularly the characterisation of output uncertainty due 
to input uncertainty is an important part of any modelling scenario and therefore one of the 
fundamental challenge of this project. McKay [McKay (1992)] provides a good analysis of 
uncertainty analysis and we begin here.  

Uncertainty in input values can result from the use of guesstimates, or arise as statistical error 
in analysis of data, or though physical impurities or non-homogeneity. Consequently, input 
may be treated as a random variable with a probability distribution. Since the output is 
approximated as a function of input data, it may be treated as a random variable. 

Thus ``the purpose of uncertainty analysis is to quantify the variability in the output of a 
computer model due to variability in the values of the inputs.'' [McKay (1992)] 

Ideally, knowledge of the input probability distribution would completely specify the output 
probability distribution, but in practice the output probability distribution will be estimated 
through sample runs of a model. McKay's paper [McKay (1992)] presents a discussion of the 
advantages of using techniques based on Latin hypercube sampling, as distinct from simple 
random sampling, to determine this probability distribution for the output. Vaurio [Vaurio 
(2005)] also provides a good discussion of uncertainty with respect to failures rates and tail 
probabilities and will be of interest when applying shifted and windowed PC.  

3.3 The General Theory of PC 
Wiener is credited as introducing the concept of Polynomial Chaos in a paper published in 
American Journal of Mathematics in 1938 [Weiner (1938)], a technique that has proved highly 
applicable, with subsequent publications detailing variations and extensions, as well as many 
instances of its application across engineering, science, biology and medicine.  

A highly readable and comprehensive introduction to the theory of PC can be found in the 
tutorial by O’Hagan [O’Hagan (2013)]. This tutorial has laid the foundation for our work and is 
an outstanding theoretical reference. It provides a rigorous discussion of the mathematical 
and statistical interplay. Further it interprets the theory for quantification of uncertainty in 
mechanistic models. Much of this discussion aligns with the more comprehensive booklet, 
titled “Polynomial Chaos based uncertainty propagation intrusive and non-intrusive methods” 
by Debusschere et.al [Debusschere et.al. (2012)]-- a good reference for the more intricate 
parts of the theory. Another good reference can be found in the 1991 book by Ghanem and 
Spanos [Ghanem et.al. (1991)]. See also the review report by Sudret and Der Kiureghian, 
UCB/SEMM-2000/08 accessible at https://www1.ethz.ch/ibk/su/publications/Reports/SFE-
report-Sudret.pdf. 

The determination of the coefficients in the PC expansion is central to the theory. An 
interesting question is “Can knowledge of the moments be used effectively to determine 
coefficients?” This question will be further investigated as part of this research project, where 
we will follow the ideas presented in [Oladyshkin (2012)]. Here the authors derive formulae 

                                                           
2 Further details and copies of abstracts can be found in constructed database. 
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for the expansion coefficients purely in terms of moments (possibly calculated from a data 
set) and demonstrate that only finitely many moments are required to calculate a finite-order 
expansion. If such an expansion is possible then it is suggested that the PC expansion may 
converge more quickly.  

There are also a number of papers that compare PC to other methods, for instance [Sarma 
et.al. (2011)] where PC with quasi-Monte Carlo techniques are used to estimate expansion 
coefficients. The paper [Mathelin et.al (2005)] compares PC to stochastic collocation. In Stage 
2 of the project we will investigate alternatives to PC and compare and contrast results.  

3.4 Multiphase Flows and Reservoir Production Optimization 
Most reservoirs are subsurface, and in many instances are comprised of relatively thin slabs 
of porous material, with oil or gas being extracted naturally or through well pumps. However, 
over the life of a well it can be necessary to maintain pressure by injecting water into the 
reservoir. In this scenario a study of multiphase fluid flows is an integral part of reservoir 
production analysis and optimization. 

The paper [Li et.al (2011)] by Li, Sarma and Zhang, 2011, gives a good introduction to the use 
of PC in reservoir quantification and proposes it as an alternate technique for uncertainty 
propagation. This article is a good benchmarking publication, with a discussion of the 
performance of PC expansion compared to brute-force MC, incorporating standard 
experimental design techniques, to calculate statistical quantities for some oil reservoir 
models. The authors note that while experimental design, ED, methods are applied widely to 
quantify uncertainties in reservoir production and economic appraisal, a key disadvantage is 
that the full probability density functions (PDFs) of the input random parameter is not 
incorporated consistently into the model. The paper compares PC and ED for synthetic and 
realistic reservoir models with different types of PDF being considered. Results show that PC 
can greatly reduce computation when compared to Mote Carlo (MC) simulation. 

There are many other examples in the literature of Polynomial Chaos expansion being applied 
to fluid dynamics. One good source of the application of PC to this area is the 2009 paper by 
Najm [Najm (2009)]. This paper describes the use of PC for the quantification of random 
variables/fields in the modelling of fluid flows and discusses their application for the 
propagation of uncertainty in computational models. Many applications are considered, 
including flow in porous media, incompressible and compressible flows, and thermofluid and 
reacting flows. Najm also provides good details of the DEs underpinning the models and is a 
good starting point for implementation of such ideas.  These ideas will be compared and 
contrasted with work in [Jansen et.al. (2008)] and extended to include closed-loop analysis for 
reservoir management. 

A good starting point for closed-loop reservoir management incorporating PC is [Sarma et.al. 
(2005)]. In this paper the authors solve numerically an optimal control problem related to 
reservoir modeling. PC is used to propagate uncertainties and applies PC to the study of real-
time dynamic water-flood optimization of a synthetic reservoir with an uncertain permeability 
field. Bayesian inversion theory is incorporated into the model updating and history-
matching. But it is important to note that details of the underlying models are not found in 
this paper, but are presented in [Jansen et.al.(2008)]. 

For more general publications on closed-loop reservoir management see [Jansen et.al. (2008)] 
and [Jansen et.al. (2009)]. These paper discuss methods used to increase the recovery of oil 
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from subsurface reservoirs and better control of the multiphase flow in the reservoir over the 
entire production period. A discussion is presented on how various elements from process 
control may play a role in such ‘closed-loop’ reservoir management, in particular 
optimization, parameter estimation and model reduction techniques. The actual model for 
the multiphase flow and PC are also discussed here. 

3.5 Chemical Contamination through Groundwater 
The transportation of 
contaminants through 
grounds water is an 
important component of any 
mineral exploration and 
extraction process. As in 
other processes uncertainty 
of input values governing 
groundwater models, 
necessitates the use of 
stochastic models for 
quantifying the 
concentration of 
contaminants at specific 
spatial locations and in 
different time frames. Datta and 
Kushwaha [Datta et.al (2011)] 
propose PC to quantify and 
propagate such uncertainty in 
related stochastic models. 
 

3.6 Vortex Induced Vibrations 
Polynomial Chaos expansion has been used to study vortex induced vibration (VIV) in 
elastically mounted cylinders in a moving fluid. In most scenarios the VIV has in-line and 
transverse motion through the interplay of the oscillator natural frequencies and the 
hydrodynamic forcing terms arising from the viscous flow and quantified by Navier Stokes. 

Again the natural frequencies of the oscillator are treated as random quantities, meaning that 
the frequency values are uncertain within certain ranges. 

In our initial studies we have focussed on uncertainty propagation for two simpler problems. 
The first is a 2-dimensional vibration of an elastically mounted cylinder where the natural 
frequencies in each direction are equal and on incompressible viscous flow under uncertainty. 
Variants of both of these problems can then be coupled to study VIV. This work followed the 
papers: 

 [Lucor et.al. (2008)] where the authors used PC to build an accurate response surfaces for 
vortex-induced vibrations (VIV) of flexibly mounted cylinders with two degree-of-freedom. It 
provides details of stochastic DEs and uses general PC in two dimensions to solve for 
parameters in the associated model.  

A plot of concentration of contaminants against the 
cumulative distribution function for a number of random 
input variables at t=1000 days and different distances for x. 
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[Xiu et.al (2002)] provides good mathematical background for the implementation of 
generalised PC with details of optimal polynomial bases for various input distributions 
presented, including the Askey scheme. PC is first applied to second-order oscillators to 
demonstrate convergence, and subsequently is coupled to incompressible Navier-Stokes 
equations. Errors are estimated and shown to compare well with similar laboratory 
experimental results, for the pressure distribution on the surface of a cylinder subject to 
vortex-induced vibrations. 

3.7 Fault Tolerance and Sensitivity Testing 
Polynomial Chaos is seen as a highly suitable technique for testing at the tail end of 
probabilities and in this context for testing fault tolerance. The paper [Paffrath et.al. (2007)] 
uses PC to successfully approximate failure probabilities for associated DE based models. To 
accurately capture the tail probabilities they develop the new techniques of shifted and 
windowed PC. The performance of the two methods is demonstrated by a predator-prey 
model and a chemical reaction problem 

Considerable work has been done on using PC to efficiently compute Sobol's indices, where 
the bulk of computation is transferred to calculating expansion coefficients. These methods 
have been applied successfully to finite element models, with generalized PC expansions 
being used to build a surrogate that allow one to compute the Sobol’s indices analytically as a 
post-processing of the PC coefficients. Further details can be found in [Sudret (2008)] and 
[Crestaux et.al. (2009)]. 

3.8 Stress Testing 
Much work has been done on combining Experimental Design techniques with PC and in 
particular the paper [Choi et.al 2004] provides a good discussion of the associated statistics 
and the implementation of regression analysis. Finite element models are analysed and in 
particular a model to quantify the stress occurring in a joined-wing. 

3.9 Chemical Interactions 
Polynomial Chaos has been used broadly across the research community. One such example 
can be found in [Debusschere et.al. (2003)] where PC is applied to the propagation of 
uncertainty in a certain physical model (a coupled system of PDE). Numerical results are 
obtained, but are not verified. It would be good to verify these results analytically by 
comparing them to say Monte Carlo techniques.  

3.10 Experimental Design 
As mentioned earlier Experimental Design techniques are an integral part of uncertainty 
quantification and PC. Indeed many of the PC articles are based on and compared with earlier 
studies using techniques, such as Monte Carlo techniques,  and incorporating ED techniques 
(Plackett-Burman, central composite and D-optimal designs and a space filling designs) and 
response surface fitting techniques (kriging, splines and neural networks).  For examples of 
such publications see [Yeten et.al. (2008)]. 
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APPENDIX B

Research Notes On
Uncertainty Propagation using Polynomial Chaos

Diane Donovan, Steve Lynch, Marvin Tas, Bevan Thompson and Steve Tyson

1 Uncertainty Analysis

McKay presents the following discussion about uncertainty analysis in his 1992 paper [27].
An important part of model analysis is the quantification of uncertainty, particularly

the characterisation of output uncertainty due to input uncertainty; that is, quantifying
changes in the output � given small changes in the input �. Input uncertainty may
arise because the values may be guesstimates, or they may be estimated from data, or
in physical situations there might be variability from impurities. Consequently the input
is treated as a random variable with a probability distribution, and since the output is
computed as a function of the input data, it is also treated as a random variable.
Thus “the purpose of uncertainty analysis is to quantify the variability in the

output of a computer model due to variability in the values of the inputs.”[27]
Ideally, knowledge of the probability distribution for � would specify the probability

distribution of � , but in practice the probability distribution of � will be estimated from
sample runs of the model. McKay’s paper [27] presents a discussion of the advantages
of using techniques based on Latin hypercube sampling, as distinct from simple random
sampling, to determine this probability distribution for the output � .

2 General discussion of Polynomial Chaos Expansion

The following general discussion about the advantages of polynomial chaos expansion
(PCE) and is taken from a paper by Lucor and Triantafyllou [25]. In this paper they
propose PCE as a non-statistical method for solving differential equations that form part
of a model that:

- incorporates geometry through coordinates;

- allows for uncertainty quantification of input parameters and solution outputs within
a probabilistic framework.

The main advantages are that PCE allows us to:

- assign a given probability distribution to the set of input parameters;

- accurately predict the response for any set of parameters within the domain;

- develop a spectral representation for the random process in terms of orthogonal basis
functions, thus simplifying implementation.

The positive outcomes of PCE are that this technique

- is fast and efficient;
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- reduces computation cost significantly when compared to brute force methods such
as Monte-Carlo;

- propagates the effect of the chosen random distribution through the model to the
numerical solution, and so provides for sensitivity to the variability in parameters;

- provides easy access to the statistics of the random inputs, as well as, moments and
probability density functions;

- gives an expansion where the zero-index term contains the solution mean.

3 PCE, basic theory taken from O’Hagan’s tutorial [32]

For a given computer model we make the following assumptions:

- The model input is assumed to be a known random variable, �.

- The model output is also assumed to be a random variable � � ����, where � is
either a known function or � is computer generated.

Under the assumption that it may be expensive to compute � � ���� or difficult
to characterize it as a function of �, we make a modelling choice to recalibrate � as a
function of a more user friendly random variable � where

� � �����

So our interim goal is to approximate � such that � � ����. Note that � may not be
unique. We refer to � as the germ, that may take a variety of distributions: uniform
random variable; standard normal variable; exponential random variable.
In the case of one source of uncertainty Polynomial Chaos Expansion, PCE, provides

a series expansion for the function � :

���� � ���� �
��
���

�������

where �� are orthogonal polynomials of order �, � � �, and

��
���

�������

converges in a meaningful way. More specifically, the expected value of the difference
squared between � and the series expansion tend to zero:

E�� �
��

���

�����
� � � as 	� ��

that is,
��

��� ���� converges to � in mean square. Two polynomials 
� and 
� are orthogonal
if

�
�� 
�� �� E�
�� 
�� �
�

����
����
����� � ��

The key idea is to identify coefficients �� which ensure this convergence and we do this
using a “mathematical trick” that improves accuracy and efficiency.

Uncertainty Propagation with Polynomial Chaos 21



We begin by taking the series expansion

���� � ���� �
��
���

��������

and multiply by �� to obtain

��������� � ��������� �
��
���

�������������

Now note that E����� � E�
�
�

��� ������� simplifies because �� and �� are orthogonal and�
�

��� �
�

�E��
�

�� � E���� ��, so E����� � ��E��
�

��� That is,�
�

��

���������	���
� � ��

�
�

��

�������
�	���
��

Further using this new simplified version it is now possible to solve for �� given

���� �� �
�
�

��

���������	���
� � ��

�
�

��

�������
�	���
� � ������ ����

Implying that

�� �
���� ��

���� ���
� (1)

We compute for � up to � analytically, possible only for ���� ���, otherwise we use Monte
Carlo Simulation, but over a much smaller number of data points. For an alternate method
for the computation of �� see Section 5
The choice of the distribution of � is important when computing

���� � ���� �
��
���

��������

because we would like � to be nice (especially for MCS), for example normally distributed.
Once we have the coefficients ��’s and so we have � as a function of a random variable

�, we can go back to estimating the output 
 .
We note that


 � ���� � ��������

so let 
 ��� � ����.
The advantage here is that now 
 is a function of � the preferred random variable and

we can repeat the process to estimate coefficients �� for � up to � in


 ��� �
��
���

������� �
��

���

�������

and use
��
���

������� � ��
��

���

���������

It is worth remembering that PCE expands the model function using an orthogonal
polynomial series, where polynomials are chosen to match the distribution of the germ,
ensuring E���� ��� � � for � �� �. In particular, if the germ is

- a uniformly random variable we use Legendre polynomials;

- a standard normal variable we use Hermite polynomials;

- a exponential random variable we use Laguerre polynomials.
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4 Adapted PCE or failure detection

In many situations we are less interested in the full probability distribution for the output
of some model as we are in determining the probability that some user-defined ‘failure’
occurs. As an example, below we consider a predator-prey model where the event that the
prey population drops below a certain threshold; in other situations, a significant loss on
investment or the destruction of some mechanical component might be classed as failures.
One would hope that in any given model that failures do not occur too often, so extra
care must be taken to calculate failure probabilities. Indeed, extra care must be taken
whenever one tries to estimate small probabilities numerically.
In [34], Paffrath and Wever have proposed two forms of adapted PCE that hold promise

for detecting failures more effectively than the standard PCE approach described above.
In this section we describe both of them and discuss the results of one application from
[34].

4.1 Shifted PCE

The idea behind shifted polynomial chaos is to take expansions with respect to a proba-
bility distribution whose mean coincides with the point of largest failure probability, or
‘beta point’, for the model. If � is a standard normal random variable with density � and
a failure is defined to be the event that ���� � � for some function �, then the beta point
can be determined by solving the simple optimisation problem

� �� ���	
������ � ���� � ���

Taking the usual Hermite polynomials �� and applying a shift in domain ������ �� �������
we obtain a new basis of polynomials, which are orthogonal with respect to ����� �� ������.
To see this, simply compute

����� ���� �
�

����������������� ��

�
�

����� ������� ������ �� ��

� ���� ���

� �� 	 �� 
�

The belief is that the error in an expansion of � with respect to the �� should be minimised
at �, leading to better estimates on failure probabilities. Paffrath and Wever do not delve
any further into theoretical aspects here, but there are some obvious questions to ask. For
example, the total probability of failure is given by

P����� � �� �
�
������

���� ���

and we might investigate how the PCE approximation to this quantity varies as the shift
changes. Failures are occurring over an entire region - is the beta point an optimal choice?

4.2 Windowed PCE

In windowed polynomial chaos we first determine the beta point for our model, or some
approximation to it, and then choose a neighbourhood 
 or ‘window’ about that point

Uncertainty Propagation with Polynomial Chaos 23



over which to approximate. If � is a random variable with probability density function
����, then we may form a windowed approximation to any random variable ���� of interest
as follows. We first truncate and renormalise � so that it is supported in �, by setting

����� �
��

�
������

�
���� � � �
� � �� ��

We then perform the Gram-Schmidt algorithm on the polynomial basis ��� �� ��� � � � � to
obtain an orthogonal basis ����� over �, with respect to the inner product

��� 	�� ��
�
�

����	�������� ���

Finally, we compute expansion coefficients as before, but use ��� ��� to project in (1). Again,
this should result in better resolution close to the beta point, however our approximation
will now contain absolutely no information about � outside of the chosen window. Another
possible downside is the need to re-perform Gram-Schmidt each time a new window is
chosen - this is necessary since the truncated distribution �� will almost never have a
standard form, and so the standard polynomial bases become unavailable.

5 Alternate method for calculating coefficients

Equation 1 describes how to determine the coefficients �� in the PCE using analytical or
numerical techniques. Choi, Grandhi, Canfield and Pettit [5] describe how these coeffi-
cients can be estimated using regression analysis based on Latin hypercube sampling.
A Latin Hypercube Sample of dimension �, with underlying set 	

 � ��� � � � � 
�, is a

set of 
 �-tuples chosen from 	

� such that each component takes the set of values 	

.
More precisely, a Latin Hypercube Sample, LHS, is a set � � ����� ��� � � � � ��� � �� � 	

�
such that

��� � 
�

for 
 � �� � � � � �� �� � ��� � 	���� ��� � � � � ��� � � � � ��� � �� � 	

�

LHSs over a �-dimensional parameter space are easy to generate and can be represented
as an 

 � array � � 	��
� ��
, (� � 
 � 
, � � � � �), where each row corresponds to a
�-tuple. For instance:

1) For each variable ��, � � � � �, divide the range of that variable into 
 non-
overlapping intervals ���, � � 
 � 
 on the basis of equal probability.

2) For each column � generate a random permutation �� on the set ��� � � � � 
�. For
� � 
 � 
, if ���
� � �, then randomly select (with respect to its probability density
for the given variable) one value �� � ��� and set ��
� �� � ��.

3) Repeat Step 2 for all � � �� � � � � � until we have filled the 

 � array.

Now this LHS can be combined with PCEs to build an approximation for the response
model for the uncertain parameters. Choi et.al. begin with the following insightful discus-
sion for a simple model for approximating the non-linear relationships. This model takes
the form

� ��� � ������� � ������� � ������� � ��������
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In this model, ��� ��� �� and �� are the mean, linear, quadratic, and cubic effects of the
responses, respectively, and most of the time model uses polynomials

����� � �� ����� � �� ����� � ��� ����� � ���

However, since these functions are not orthogonal, the computation can be excessive for
say large positive values for � and for large negative values for � the cubic power takes large
negative values while the quadratic term take large positive values. Thus small changes in
� ��� could result in large changes in the coefficients ��� � � � � �� and the associated least-
squares problem may be ill conditioned. The alternative is to use orthogonal polyomials
and implement PCE.
Choi et.al. provide a general discussion of PCE, where in their notation they write the

PCE as

���� �
��

�

����	����

where � is a random character used in the estimation of the variables, �� are the coefficients
of interest and ��	���� are the orthogonal polynomials. They comment that if a solution
is known then the coefficients �� can be calculated as

�� �
���������	�����

����	��������	�����

where often MCS is used to evaluate the expected values. However Choi et.al. propose
an alternative to MCS based on LHS and illustrate their method on a simple example, as
presented in the next subsection.
So in summary the Choi et.al. procedure, [5], is as follows.

1) Select experimental designs using LHS.

2) Simulate system response at each design point.

3) Construct approximate model using PCE.

4) Conduct ANOVA and residual analysis.

6 Applications and Examples

6.1 A simple example

Choi, Grandhi and Canfield [5] studied the simple model is 
 � ��, where � is a normal
random variable which has a mean of 2, unit standard deviation and 
 is approximated
by a second-order polynomial model:

�
 � �����	� 	 �����	� 	 �����	��

where 	 is a standard normal distribution ��
� ��. Their choice of orthogonal polynomials
is:

���	� � �� ���	� � 	� ���	� � 	� � ��
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and where the random variable � is transformed as

� � �� � ����

Then the unknown coefficients are found by first using LHS to identify points in the
parameter space, then ��� ��� �� are determined using regression analysis based on the
selected points.
Choi et.al. repeat this process for a third-order polynomial model where coefficients

��� ��� ��� �� are calculated and it is found that �� is insignificant. Using arguments sup-
ported by statistics given in an ANOVA table, they deduce that the third-order polynomial
is sufficient for the fitting.
They go on to comment that in this simple example the error can be determined by

plotting the response and comparing it to the MacLaurin polynomial. In other, more in
depth, examples it is possible to check the error using residual analysis.
Choi et.al. then go on to apply the same procedure to a �-dimensional model � �

	�����, and in the later stages of the paper illustrate with a practical example analysing
buckling in a joined-wing model.

6.2 PCE applied to Spring and Harmonic Motion

To demonstrate the applicability of PCE to models built around differential equations, we
consider the equation of motion for a unit mass on a spring,

���
� � ����
��

Here � stands for the displacement of the mass and � for the spring constant. Even if
we introduce some randomness by taking � � ���� to be a strictly positive, uniformly
distributed random variable, the resulting equation

���
� �� � �������
� �� (2)

can be solved analytically. For illustration however, let us expand � and � as truncated
series of Legendre polynomials:

��
� �� �
��

���

���
�
����� ���� �
��

���

��
�����

Notice that the coefficients of � are now time dependent, while the polynomial basis
remains fixed. Substituting these expansions back into the DE then yields

��

���

����
�
���� �

�
�

��
���

��
����

��
� ��
���

���
�
����

�
�

� �
��
���

��
���

�����
�
����
�����

We now make use of the orthogonality of our polynomial basis once more. The projection
of the left-hand-side onto any 
� simplifies to

�

��

��
���

���
�

	
�

��
���

����
�� 
�� � �
�� 
�����
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while on the right we obtain
�
����

��
���

��
���

�����������

�
� �

��
���

��
���

�������� ������

so we see that

��� � �
�

���� ���

��
���

��
���

����������� ������ � � �� � � � � �� (3)

Hence the problem of calculating the coefficients �� reduces to solving the deterministic
system of coupled ODE’s (3). The hope is that solving this system for a surrogate and
using that to run simulations will be more efficient than repeatedly solving (2), as a crude
Monte-Carlo approach would require. It is worth noting that each of the values ���� �����
can be found analytically. Indeed, many of them vanish.

6.3 A predator-prey model

Paffrath and Wever achieved some success at predicting failure probabilities in a simple
predator-prey model, the Lotka-Volterra system:

����� � ������ 	����
���

�
��� � 	����
���� �
����

Here the coupling constants �, 	 and � are all taken to be positive and � and 
 respectively
measure the time-dependent sizes of prey and predator populations in an ecosystem. The
authors introduce randomness by allowing 	��� to be normally distributed with mean 1
and standard deviation 0.01, and define a failure to be the event that ���� �� � ����. They
then fix a set of initial conditions and run a large number of Monte-Carlo simulations to
obtain a near-exact estimate of the failure probability over time. This was then compared
to estimates obtained by expanding �, 
 and � in third-order Hermite expansions with
respect to a standard normal (CH), a normal with shift 
 � � (SH), and a windowed
normal (WH) with 	 � 
�� �
. The results are summarised in Figure ??.
Clearly the accuracy of the three different approximations is highly dependent on time,

but each performs well at least on some interval. This raises a number of questions
regarding optimal choices of windows and shifts, and how these choices depend on the
evolution of a system, but demonstrates the potential of both techniques.

6.4 PCE applied to a vortex induced vibration scenario

In this section, we are working towards using PCE to study vortex induced vibration (VIV)
in elastically mounted cylinders in a moving fluid. The VIV has in-line and transverse
motion through the interplay of the oscillator natural frequencies and the hydrodynamic
forcing terms arising from the viscous flow and quantified by Navier Stokes. Again the
natural frequencies of the oscillator are treated as random quantities, meaning that the
frequency values are uncertain within certain ranges.
We begin by focussing on uncertainty propagation for two much simpler problems.

The first is a 2-dimensional vibration of an elastically mounted cylinder where the natural
frequencies in each direction are equal. The focus is on incompressible viscous flow under
uncertainty. Variants of both of these problems can then be coupled to study VIV.
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6.4.1 Mathematics for UQ using PCE to model oscillating cylinders

In the first example we use PCE to solve differential equations that model an elastically
mounted cylinder with natural frequencies of oscillation which are random variables and
subject to random forces.
Let the position of the centre of the cylinder be ����� ��� � ��� ��� where

�� � ������ �� � ��

����� � ����� ���

�� � ��� ��� �� � ��

� ���� � ����� ���

����� � �	��� ��� and �� ��� � �	��� ��� represent the natural frequencies of the oscillator
along the �� and �� directions, respectively. Here the uncertainty is represented by the
dependency on �.
For VIV the hydrodynamic forcing ���� ��� acts as a coupling between these equations

whose solutions are computed iteratively.
We may use a parametric representation of the second order stochastic process:

X��� �� � ����� ��� � ��� ���

with X��� �� varying randomly over time � as

���� �� �
��

���

������	��
�����

� ��� �� �
��

���

������	��
�����

In this PCE

� �
��������, � � N, are zero-mean random vectors (uncertain sets of parameters)
dependent on a random event � chosen from a random event space 
;

� ������ and ������ are coefficients of interest;

� 	��
���� are orthogonal polynomials over the domain �
���������.

We use Legendre polynomials as 
 are uniformly distributed.
For now we simplify the above presentation and use an approach suggested by Xiu,

Lucor, Su and Karniadakis [49].
So starting with

�� � ����� �� � ������ � ����� ��� (4)
�� � ����� �� � ������ � ����� ��� (5)

we relabel as X � x, ������ � ����� and ��� ��� � ������ Then let �x � y and the
equation can be rewritten as


x


�
� y�


y


�
� �����y � �����x � f��� ���

Here x� y� f are two dimensional and �� and �� are correlated random variables.

Uncertainty Propagation with Polynomial Chaos 28



Then we use PCE to approximate � and � as follows

� �
��

���

�����

� ���� �
��

���

� �
� ����

�
� �

where ��� �
�
� ��� are coefficients of the PCE of �� � ����� � � �� �� respectively. Note that we

have truncated to a finite sum. This is then applied in the differential equations

��

���

���

��
�� �

��

���

�����

��

���

���

��
�� �

��

���

��

���

	�������� �
��

���

��

���

��

���

������������ �
��

���

�������


To illustrate the solution technique we only take one of the Equations 4 and 5.
There is some work to be done using a Galerkin projection of the above equation

onto each polynomial basis ���� to ensure the error is orthogonal to the functional space
spanned by the finite-dimensional basis ����. However with a bit of work the above
simplifies to

���

��
� �� (6)

���

��
�

�

���

��

�
� ��

���

��
���

	�������� �
��

���

��
���

��
���

�����������

�
� � ������ (7)

where ���� � �������� and ����� � ����������; here ��� � E���
This gives a set of ��
 � �� coupled ODEs with the terms ����� ������ and ���

� � being
evaluated analytically from the definition of ��.
Here we can use some standard tricks to simplify the calculations.

� If we assume that the natural frequency of the oscillator is uniformly distributed
(a natural assumption in this setting) then we can use Legendre polynomials �� so�
�

��
���� � ���� where � is Kronecker delta � � if � � � and � � otherwise.

� Moreover ���� � �� � ���� so after scaling

����� � ���������� �
�

�

�
�

��

���������

where we have rescaled the mean zero uniform random variable � to have the PDF
equal to ��� on ���� ��.

� Now �������� is a polynomial of degree at most �
 � 	 so Gaussian Quadrature
could be used to compute the ���

��, ���� and ����� although analytic formula are not
difficult to compute in this case.

Now (6) and (7) are a coupled system of 	�
 � �� ODEs which can be solved accu-
rately and efficiently through code developed by Shampine that is incorporated in several
packages including Matlab.
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6.4.2 Uncertainty propagation using PCE applied to Navier Stokes

We are now in a position to consider a more complicate scenario.
Let the 2-dimensional velocity field be given by u��� �� ��
We consider incompressible flow so u satisfies the following Navier Stokes equation

� � u � �� (8)
�u

��
� �u � ��u � ������

����u� (9)

Here �� is the Reynolds number and � is the pressure.
Now expand u and � � to order � ; that is, set

u�x� �� �� �
��

���

u��x� ��	��������

��x� �� �� �
��

���

���x� ��	��������

The Navier Stokes equations become

��

���

� � ui	� � ��

��

���

�u�

��
	� �

��

���

��

���

�u� � ��u�	�	� � �
��

���

���	� ���
��

��

���

��u�	��

Similarly to the ODE case projecting onto the random space spanned by �	��
�
�
and

taking inner products with each of 	� we obtain

� � uk � ��

�u�

��
�




�	�

��

��

���

��

���

�u� � ��u�
��� � ���� ���
����u��

Thus we have a set of � � 
 equations that are Navier Stokes like. We can change
coordinates setting x � x� � ����x� ��� � � �� where now the �� and �� variables are the
original variables. Thus linking an ODE variant of Equations 6 and 7 with the PDE, for
the case of one cylinder.
The combined system of PDEs and ODEs have to be solved together. This is done

iteratively one time step at a time.
Returning to the paper by Lucor and Traintafyllou [25] where they choose the time

step to be 1/5 of the natural frequency of the oscillator. They consider two cases: one
where the natural frequency in the inline direction is the same as in the transverse direc-
tion and another where these are different; one can take � �

��
� � �

��
� 
��� where the ��

are independently and identically distributed (iid) uniform random variables; again these
should be independent of the other random variables.
We need boundary conditions, so we consider upstream a constant velocity U which we

assume is subject to uniformly distributed noise so U � ����
��i� here i is a unit vector
in the inline � direction while � is a uniformly distributed random variable with mean 0
and variance 
� In the new coordinates the RHS of (8) acquires the term A��� � � ����� ��
and the cylinder occupies x � 0.
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Of course � and � are independent random variables where � is the uniformly dis-
tributed uncertainty in the natural frequency of the elastically supported cylindrical bluff
body.
The fluid forces on the cylinder are computed by

F �
��

��n����
����u��u� � � n���

where n is the outward normal on the cylinder, �� is arc length around the curved surface
of the cylinder.
Also � is the diameter of the cylinder and

�� �
��

�

�
���	 �

�

and �� �
��

�

�
���	 �

�

7 Weather derivatives

A very brief summary of Pricing weather derivatives, PhD thesis by B Petschel.
Electricity producer’s profit depends directly on electricity demand and data shows

that power usage depends significantly on temperature through air-conditioning (quite
markedly in Australia since around 2000).
Basic information

- Weather (temp.) derivatives are financial contracts with payoffs depending on
heating degree days (HDD) and cooling degree days (CDD).

- CDD measures how much the daily average temperature exceeds 65 deg F (temper-
ature in US Govt buildings).

- Temperature model cannot be based on normal variables since this leads to too
many outliers in the fit.

- The Solution is to add a jump term to the temperature model.

- Temperature Model is a stochastic differential equation with jumps; the temper-
ature (solution) is a random variable.

Temp � Av. Temp. � random, drifting & jumping, process

used to approximate the cooling degrees days; the solution is integrated over time
approximating average temperature, which is a random variable.

The result is a model that fits Brisbane temperature data fairly well.

However we now have a problem because adding a jump means that temperature
(solution) no longer has a nice formula.
Ben’s solution is to get a formula for the moment generating function, which can be

expressed in terms of its moments (mean, variance, kurtosis etc). Hermite polynomials
(functions) are used to approximate the generating function and moments can be obtained
as a by product of the procedure. We can price CDD contracts using moments.
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7.1 PCE and Ben’s problem

Both problems essentially reduce to

���� �
��

���

������� ������
����
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