
To summarize: The phase space rep is defined by the Weyl-Wigner transform:

A = W(â) â = W−1(A)

T W−→ K K W−1
−→ T

In T : ((â, b̂)) = Tr(â†b̂). In K: (A,B) = 1
2π~

∫
A(q, p)∗B(q, p) dq dp .

A ? B = W(âb̂) 6= W(b̂â) = B ? A

A(q, p) =

∫
aK(q − y/2, q + y/2) eipy/~ dy

aK(x, y) =
1

2π~

∫
A(x+y2 , p) eip(x−y)/~ dp
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Ex. W
(
ei(αq̂−βp̂)

)
= ei(αq−βp), W−1

(
ei(αq−βp)

)
= ei(αq̂−βp̂) (Weyl)

It follows that W(Î) = 1, W(p̂n) = pn, W(q̂n) = qn,

W−1(q2p2) = 1
6(q̂

2p̂2 + q̂p̂q̂p̂ + p̂q̂2p̂ + p̂2q̂2 + p̂q̂p̂q̂ + q̂p̂2q̂)

W([Aq̂2 +Bp̂2]2) = [Aq2 +Bp2]2 − 3AB~

and so on. (Weyl’s ordering rules.)
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Lecture 2 The Wigner function

• The most interesting and important object in the phase space rep of QM is the Wigner

function:

W = W( 1
2π~ ρ̂)
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Lecture 2 The Wigner function

• The most interesting and important object in the phase space rep of QM is the Wigner

function:

W = W( 1
2π~ ρ̂)

• For a pure state with ρ̂(t) = |ψ(t)〉〈ψ(t)|, we have

W (q, p, t) =
1

2π~

∫
ψ(q − y/2, t)ψ(q + y/2, t)∗ eipy/~ dy .
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Lecture 2 The Wigner function

• The most interesting and important object in the phase space rep of QM is the Wigner

function:

W = W( 1
2π~ ρ̂)

• For a pure state with ρ̂(t) = |ψ(t)〉〈ψ(t)|, we have

W (q, p, t) =
1

2π~

∫
ψ(q − y/2, t)ψ(q + y/2, t)∗ eipy/~ dy .

• We see that∫
W (q, p, t) dq dp = 1 , 〈â〉(t) =

∫
A(q, p)W (q, p, t) dq dp = 〈A〉(t) .
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• Furthermore,∫
W (q, p, t) dp =

1

2π~

∫
ψ(q − y/2, t)ψ(q + y/2, t)∗ eipy/~ dy dp = ψ(q, t)∗ψ(q, t) ,

and it is also easily seen that

∫
W (q, p, t) dq = ψ̃(p, t)∗ψ̃(p, t) .

In fact,
∫
LW (q, p, t) dq dp ≥ 0 , where L is any straight line aq+ bp = const. in the phase

plane, is the marginal probability density for the variable aq̂ + bp̂.
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• Furthermore,∫
W (q, p, t) dp =

1

2π~

∫
ψ(q − y/2, t)ψ(q + y/2, t)∗ eipy/~ dy dp = ψ(q, t)∗ψ(q, t) ,

and it is also easily seen that

∫
W (q, p, t) dq = ψ̃(p, t)∗ψ̃(p, t) .

In fact,
∫
LW (q, p, t) dq dp ≥ 0 , where L is any straight line aq+ bp = const. in the phase

plane, is the marginal probability density for the variable aq̂ + bp̂.

• However, W cannot be regarded as a classical probability density.
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• Consider ψ(x, t) = ψ(x) = const. e−αx
2/2. This gives

W (q, p) = const.

∫
e−α(q−y/2)2 e−α(q+y/2)2 eipy/~ dy

=
1

π~
e−(αq2+p2/(α~2))

Note how the spread in momentum increases as we make α bigger to decrease the spread

in position — the Wigner function ‘knows’ about ~ and the uncertainty principle!
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• Consider ψ(x, t) = ψ(x) = const. e−αx
2/2. This gives

W (q, p) = const.

∫
e−α(q−y/2)2 e−α(q+y/2)2 eipy/~ dy

=
1

π~
e−(αq2+p2/(α~2))

Note how the spread in momentum increases as we make α bigger to decrease the spread

in position — the Wigner function ‘knows’ about ~ and the uncertainty principle!

• More striking is to consider something like ψ(x, t) = ψ(x) = const. xe−αx
2/2, which gives

W (q, p) = const.

∫
(q − y/2)(q + y/2)e−α(q−y/2)2 e−α(q+y/2)2 eipy/~ dy

=
1

π~
e−(αq2+p2/(α~2))

(
2(αq2 + p2/(α~2))− 1

)
.

— not everywhere positive! For this reason W is called a quasiprobability density.

Note that in this example the area of the ellipse on which W is negative has area ~/2.
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• Other non-classical properties of W include∫
W (q, p, t)2 dq dp ≤ 1

2π~
,

with equality only in the case of pure states, and

− 1

π~
≤ W (q, p, t) ≤ 1

π~
. (∗)
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• Other non-classical properties of W include∫
W (q, p, t)2 dq dp ≤ 1

2π~
,

with equality only in the case of pure states, and

− 1

π~
≤ W (q, p, t) ≤ 1

π~
. (∗)

• It is known that the only pure states that give rise to nonnegative Wigner functions are

coherent states.

It is not known which mixed states give rise to nonegative Wigner functions . . .
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To see where (∗) comes from, consider the parity operator on Hilbert space:

P̂ |x〉 = | − x〉 ,

for which

PK(x, y) = 〈x|P̂ |y〉 = δ(x + y) .

Its phase space representative is

P (q, p) =

∫
δ((q − y/2) + (q + y/2)) eipy/~ dy = π~ δ(q) δ(p) .

Then

〈P̂ 〉(t) =

∫
P (q, p)W (q, p, t) dq, dp = π~W (0, 0, t) .

Since P̂ 2 = Î , we have

−1 ≤ 〈P̂ 〉 ≤ 1

and hence

− 1

π~
≤ W (0, 0, t) ≤ 1

π~
.
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• Consider the quasiprobability mass QS on a given subregion S of phase space,

QS =

∫
S

W (q, p, t) dq dp .

It follows from (∗) that

− A

π~
≤ QS ≤

A

π~
where A is the area of S.
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• Consider the quasiprobability mass QS on a given subregion S of phase space,

QS =

∫
S

W (q, p, t) dq dp .

It follows from (∗) that

− A

π~
≤ QS ≤

A

π~
where A is the area of S.

• Can we find the tightest possible bounds on QS, over all possible Wigner functions W ?

We rewrite QS as

QS =

∫
χ(q, p)W (q, p, t) dq dp

where χ(q, p) is the characteristic function of S. Then we see that

QS = 〈χ̂〉
where χ̂ = W−1(χ) .
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It now follows that the greatest lower and least upper bounds on QS are the greatest lower

and least upper bounds on the spectrum of the operator χ̂ on Hilbert space.

So we are led to consider the eigenvalue problem

(χ̂ ϕ)(x) ≡
∫
χK(x, y)ϕ(y) dy = λϕ(x) ,

where

χK(x, y) =
1

2π~

∫
χ(x+y2 , p) eip(x−y)/~ dp =

1

2π~

∫
(
x+y

2 , p)∈S
eip(x−y)/~ dp .
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Example: Introduce a parameter L with dimensions of length, and change to dimensionless

variables

q → q/L , p→ Lp/~ , ~ → ~/~ = 1 , W → ~W , etc.

Consider a region in the phase plane of the form shown in Fig. 1:–
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For such a region, the characteristic function takes the form

χ(q, p) =


1 b < q < c , F1(q) < p < F2(q)

0 otherwise

and the kernel becomes

χK(x, y) =
1

2π

∫ F2([x+y]/2)

F1([x+y]/2)

eip(x−y) dp

=
ei(x−y)F2([x+y]/2) − ei(x−y)F1([x+y]/2)

2πi(x− y)
.

for 2b < x+ y < 2c, and 0 otherwise. Note that the singularity at x = y is only apparent.
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• Specializing to the case of the disc of radius a centred on the origin, q2 + p2 ≤ a2, we

have

F1(q) = −
√
a2 − q2 , F2(q) =

√
a2 − q2

for −a ≤ q ≤ a, and so have to consider the eigenvalue equation

∫ 2a−x

−2a−x

sin[(x− y)
√
a2 − (x + y)2/4]

π(x− y)
ϕ(y) dy = λϕ(x) .
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• Specializing to the case of the disc of radius a centred on the origin, q2 + p2 ≤ a2, we

have

F1(q) = −
√
a2 − q2 , F2(q) =

√
a2 − q2

for −a ≤ q ≤ a, and so have to consider the eigenvalue equation

∫ 2a−x

−2a−x

sin[(x− y)
√
a2 − (x + y)2/4]

π(x− y)
ϕ(y) dy = λϕ(x) .

• Remarkably, this is exactly solvable. The eigenfunctions are the SHO eigenfunctions

ϕn(x) = Hn(x) e−x
2/2 for n = 0, 1, 2, . . . .
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have
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√
a2 − q2 , F2(q) =

√
a2 − q2

for −a ≤ q ≤ a, and so have to consider the eigenvalue equation

∫ 2a−x

−2a−x

sin[(x− y)
√
a2 − (x + y)2/4]

π(x− y)
ϕ(y) dy = λϕ(x) .

• Remarkably, this is exactly solvable. The eigenfunctions are the SHO eigenfunctions

ϕn(x) = Hn(x) e−x
2/2 for n = 0, 1, 2, . . . .

• From the definitions of χ and χ̂, the nth eigenvalue λn is the quasiprobability mass on the

disc for the Wigner function Wn(q, p) corresponding to the state with wavefunction ϕn(x).

This Wigner function is easily calculated to be

Wn(q, p) = (−1)n
1

π
e−(q2+p2)Ln[2(q2 + p2)]

where Ln is the Laguerre polynomial.
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Therefore we have

λn ≡ λn(a) =

∫ a2

0

Ln(2u) e−u du n = 0, 1, 2, . . . .

Thus

λ0(a) = 1− e−a
2
, λ1(a) = 1− (1 + 2a2)e−a

2
, λ2(a) = (1 + 2a4)e−a

2
,

λ3(a) = 1− (1 + 2a2 − 2a4 + 4
3a

6)e−a
2
,

and so on.

Fig. 2 shows the graphs of λn(a) versus a for n = 0, 1, 2, 3, and also the graphs of the

greatest and least eigenvalues λmax(a) and λmin(a) (bold lines).
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• Note that λmax(a) = λ0(a) = 1 − e−a
2
, whereas the graph of λmin(a) has the peculiar

scallopped shape shown, because

λmin(a) = λ1(a) for 0 ≤ a < a1,

λmin(a) = λ2(a) for a1 ≤ a < a2 etc.,

where

a1 is the greatest value of a at which λ1(a) = λ2(a),

a2 is the greatest value of a at which λ2(a) = λ3(a) , etc.

Thus a1 = 1, a2 =
√

(3 +
√

3)/2, etc.
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• Note that λmax(a) = λ0(a) = 1 − e−a
2
, whereas the graph of λmin(a) has the peculiar

scallopped shape shown, because

λmin(a) = λ1(a) for 0 ≤ a < a1,

λmin(a) = λ2(a) for a1 ≤ a < a2 etc.,

where

a1 is the greatest value of a at which λ1(a) = λ2(a),

a2 is the greatest value of a at which λ2(a) = λ3(a) , etc.

Thus a1 = 1, a2 =
√

(3 +
√

3)/2, etc.

• The quasiprobability mass on the disc at any value of a must lie between the bold lines

at that value of a, whereas a classical probability mass could lie anywhere in [0, 1].

There are implications for quantum tomography ...
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The ideas of classical tomography are well-known ...

(pictures from M.G. Raymer, Contemporary Physics 38 (1997), 343–355.)
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From the Wigner function we can recover the wavefunction:

ψ(x)ψ(y)∗ =
1

2π~

∫
W (x+y2 , p) eip(x−y)/~ dp

— choose a fixed y such that ψ(y) 6= 0.
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