To summarize: The phase space rep is defined by the Weyl-Wigner transform:

A=W(a) a=WA)
72K KT
InT: ((a,b)) = Tr(a'b). In K: (A,B) = 5= [ Alg,p)*Blg,p)dqdp.

Ax B =W(ab) # W(ba) = B A

Alg,p) = /ax(q —y/2,q +y/2) e dy

1

CLK([E, y) — % / A(%*’y’p) eip(x—y)/h dp




W Hg*p®) = LGP + apdp + pa°p + *64* + Papd + Gp°q)

W([AG* + Bp?)?) = [A¢*> + Bp*]* — 3ABh

and so on. (Weyl's ordering rules.)
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function:
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e For a pure state with p(t) = [1(t))(1)(t)|, we have

o [ vla— vz 0u /e ey,

orh

Wig,p,t) =

e We see that

/W(q,p,t) dgdp=1,  {a)(t) :/A(q,p)W(q,p,t) dgdp = (A)(t).



e Furthermore,
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In fact, fL Wi(q,p,t)dqdp > 0, where L is any straight line aq + bp = const. in the phase
plane, is the marginal probability density for the variable aq + bp.



e Furthermore,

/W(q,p, t)dp = %1 / (g —y/2, (g +y/2,t) ™M dydp = (g, t)"Y(q. 1),
T
and it is also easily seen that
/W(q,p, t)dg = p(p, t)"(p,t).

In fact, fL Wi(q,p,t)dqdp > 0, where L is any straight line aq + bp = const. in the phase
plane, is the marginal probability density for the variable aq + bp.

e However, W cannot be regarded as a classical probability density.
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Note how the spread in momentum increases as we make « bigger to decrease the spread
in position — the Wigner function ‘knows’ about & and the uncertainty principle!
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—az?/2

e More striking is to consider something like ¢(z,t) = ¥ (x) = const. ze , which gives

Wi(q,p) = const. /(q —y/2)(q+y/2)e” alg—y/2)* ,—ala+y/2)* ipy/h dy

1
= — e~ (aa*+p?/(ah?) (2(04(]2 +p?/(ah?)) — 1) .
T

— not everywhere positive! For this reason W is called a quasiprobability density.

Note that in this example the area of the ellipse on which W is negative has area h/2.
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e Other non-classical properties of W include

1
W( dd<—
/ (¢,p,t)"dqdp ok

with equality only in the case of pure states, and

1 1
L <W .
— (q,p,t) < —



e Other non-classical properties of W include

1
W( dd<—
/ (¢,p,t)"dqdp ok

with equality only in the case of pure states, and

S <Wap< . (9

T

e It is known that the only pure states that give rise to nonnegative Wigner functions are
coherent states.

It is not known which mixed states give rise to nonegative Wigner functions . ..



To see where (x) comes from, consider the parity operator on Hilbert space:
Plr) =| =),

for which
Pr(z,y) = (z|Ply) = d(z +y).

Its phase space representative is

P(q,p) = /5((61 —y/2)+ (¢ +y/2)) e™"dy = Th(q) §(p) -

Then

A

(P)(t) = /P(q,mW(q,p, t)dq,dp = whW(0,0,t).

Since P2 = f we have
—1<(P) <1

and hence

1 1
——— < W(0.0.t) < —
wh — (”)_Wh



e Consider the quasiprobability mass (Jg on a given subregion S of phase space,

Qs — /S W (g, p.t) dqdp.

It follows from (x) that

where A is the area of S.



e Consider the quasiprobability mass (Jg on a given subregion S of phase space,

Qs — /5 W (g, p.t) dqdp.

It follows from (x) that

_ < < =
wh — @s < mh
where A is the area of S.

e Can we find the tightest possible bounds on ()g, over all possible Wigner functions 1177

We rewrite ()5 as
Qs = /x(q,p)W(q,p, t) dg dp

where x(q, p) is the characteristic function of S. Then we see that
Qs = (X)
where ¥ = W™ !(x).



It now follows that the greatest lower and least upper bounds on (g are the greatest lower
and least upper bounds on the spectrum of the operator y on Hilbert space.

So we are led to consider the eigenvalue problem

(%)) = / (@) o) dy = Ap(e),

where

1

XK(T,y) = —/X(w,p) AL [ — ePT=/M gy,
2 27Th (%w’p)es



Example: Introduce a parameter L with dimensions of length, and change to dimensionless
variables

q—q/L, p — Lp/h, h— h/h=1, W — AW, etc.

Consider a region in the phase plane of the form shown in Fig. 1:—



q

Fig.1. A typical region S in the phase-plane.



For such a region, the characteristic function takes the form

1 b<qg<ec, Filg <p< ()

x(q,p) =
0 otherwise

and the kernel becomes

| [Pletl/2)

Xk(T,y) = — e ) dp
27 J 7y (j+4)/2)

cilr—y) Pallet)/2) _ pile—y) Fi(la+y)/2)

2mi(x — y)

for 2b < x +y < 2¢, and 0 otherwise. Note that the singularity at = y is only apparent.



e Specializing to the case of the disc of radius a centred on the origin, ¢*> + p* < a*, we
have

Fi(q) = —a*—q¢*,  Fyq) =+a*—¢

for —a < ¢ < a, and so have to consider the eigenvalue equation

o(y)dy = Ap(z) .

/an sin[(z — y)v/a? — (z +y)2/4]

—2a—1x 7T(£E T y)



e Specializing to the case of the disc of radius a centred on the origin, ¢° + p* < a?, we
have

Fi(q) = —a*—q¢*,  Fyq) =+a*—¢

for —a < ¢ < a, and so have to consider the eigenvalue equation

o(y)dy = Ap(z) .

/2“x sin[(z — y)v/a? — (z +y)2/4]

—2a—1x 7T(£E T y)

e Remarkably, this is exactly solvable. The eigenfunctions are the SHO eigenfunctions

pn(r) = Hy(7) e~ '/2 for n = 0,1,2, ...



e Specializing to the case of the disc of radius a centred on the origin, ¢° + p* < a?, we
have

Fi(q) = —vVa>—q¢*,  Fyq)=+a>— ¢

for —a < ¢ < a, and so have to consider the eigenvalue equation

/ " onlle —y)ve o4y o(y)dy = Ap(z) .

—2a—x (CE o y)

e Remarkably, this is exactly solvable. The eigenfunctions are the SHO eigenfunctions
on(z) = Hy(z)e ™2 forn=0,1,2, ...

e From the definitions of x and y, the nth eigenvalue ), is the quasiprobability mass on the
disc for the Wigner function W,,(¢q, p) corresponding to the state with wavefunction @, (z).

This Wigner function is easily calculated to be

1 2, .9
WrL(Q7p) = (_1)n_ e (TP )LH[Q(QQ +p2)}

T
where L,, is the Laguerre polynomial.



Therefore we have

Thus

2

Mla)=1—e" | M(a)=1—(1+ 2a2)e_a2 : Xo(a) = (1+ 2a4)6_“2 :

Ag(a) =1— (1 +2a* —2a* + %aG)e_“2 :

and so on.

Fig. 2 shows the graphs of \,(a) versus a for n = 0, 1, 2, 3, and also the graphs of the
greatest and least eigenvalues A, (a) and \,,;,(a) (bold lines).
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Fig. 2. Left to right: graphs of A, for n =0, 1, 2, 3, and also of Aue. Amin
(bold lines).



e Note that \,..(a) = \o(a) =1 — ¢~ whereas the graph of \,,;,(a) has the peculiar
scallopped shape shown, because

Amin(@) = Ai(a) for 0 < a < ay,

Amin(@) = Aa(a) for a; < a < ay ete.,

where

ay is the greatest value of a at which \i(a) = \s(a),

as is the greatest value of a at which \y(a) = A3(a), ete.

Thus a; =1, as = \/(3 +1/3)/2, etc.



e Note that \,..(a) = \o(a) =1 — ¢~ whereas the graph of \,,;,(a) has the peculiar
scallopped shape shown, because

Amin(@) = Ai(a) for 0 < a < ay,

Amin(@) = Aa(a) for a; < a < ay ete.,

where

ay is the greatest value of a at which \i(a) = \s(a),

as is the greatest value of a at which \y(a) = A3(a), ete.

Thus a; =1, as = \/(3 +1/3)/2, etc.

e The quasiprobability mass on the disc at any value of a must lie between the bold lines
at that value of a, whereas a classical probability mass could lie anywhere in |0, 1].

There are implications for quantum tomography ...



The ideas of classical tomography are well-known ...

(pictures from M.G. Raymer, Contemporary Physics 38 (1997), 343-355.)



integrals are trom —0O0O to + 00, lhe generalization of
equation (2) to an arbitrary variable R is

Ur(R) :J ¥(x)Ulx, R) dx, (3)

where U(x,R) is some transformation function. Then the
probability density for obtaining values R upon measure-
ments is ::ER(R) 2,

It is not understood deeply why the wave functions
transform in this way. This question is likely related to the
question why the wave function is complex. Again the
complementarity idea comes in. Any two variables whose
wave function representations transform as in equation (2)
are said, first by Niels Bohr, to be complementary [6].

If the state if identified with the set of probability
densities for all possible observable variables, as in Item (1),
then it might be thought that in order to determine a state,
you would need to measure the distributions of all of the
variables and then try to invert the data to find the state. It
turns out, though, to our good fortune, that one needs only
to measure the distributions of a subset of all possible
variables. I call such a subset of variables Tomographicallv

Figure 3. In computer-aided tomography (CAT) a beam of X-
rays passes through a head, integrating the head’s density
function IXx,y) along straight lines. If this is carried out for
many different angles 6, the density function can be recon-
structed hv comnuter nrocessing of the nroiection data.
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FIG. 1. (a) Reconstructed number-state density matrix ampli-
tudes py, for an approximate [n = 1) number state. The coher-
ent reconstruction displacement amplitude was |a| = 1.15(3).
The number of relative phases N = 4 in Eq. (4). 50 #tguy = 3.
(D) (color) Surface and contour plots of the Wigner function
W () of the [n = 1) number state. The plotted points are the
result of fitting a linear interpolation between the actual data
points o a 0.1 by 0.1 grid.  The octagonal shape is an artifact

signature. This view is further supported by the fact that
farther off-diagonal elements seem to decrease faster than
direct neighbors of the diagonal. The reconstructed Wig-
ner function of a coherent state with amplitude || = 1.5
is shown in Fig. 3.

Next we created a coherent superposition of |n = 0)
and |n = 2) number states. This state is ideally suited
to demonstrate the sensitivity of the reconstruction to co-
herences. The only nonzero off-diagonal elements should
be pp and py. with a magnitude of |py| = |pal =
JPoopaz = 0.5 for a superposition with about equal proba-
bility of being measured in the [n = 0) or |n = 2) state.
In the reconstruction shown in Fig. 4 the populations pg
and p,; are somewhat smaller. due to imperfections in the




From the Wigner function we can recover the wavefunction:

(@) /W x—gy’p ip(z— U)/ﬁdp

— choose a fixed y such that v (y) # 0.



linearly polarized, plane travelling wave can be represented
at a fixed pomt in space by its oscillating electric-field
amplitude.

E(t) =Ey[q cos (at +o) +p sin (of +o)]  (12)

Here E; is a known scaling field value that depends on the
volume of the enclosure in which the light travels and
Planck’s constant 7 . Here the variables called ¢ and p have
nothing to do with position or momentum; they are simply
unitless numbers giving the strength of the electric field.
The notation reminds us that ¢ and p are complementary in
the sense of equation (2). Also an optical phase shift 8 is
included in equation (12). Let us denote by ¢, and p, the
values in the special case that 8= 0. If the value of the
phase shift is not zero, then ¢. p may be related to g and py
by
q =y cos 8 Fpy sin o,

p = sin § Tp; cos 6, (13)

This has a form similar to eauation (11) and it also

amplitude, | y(q)|
phase, B(q)/ @

quadrature, q

Figure 9. An experimentally reconstructed quantum wave
function of a pulsed light field containing on average 12
photons, produced by strongly attenuating a laser field. The
variable ¢ is a unitless measure of electric-field strength, and
[U(g)|* equals the probability for ¢ to be found having a certain
alue, The wave fupction is expressed as Yig)=
Iljl(q){] exp [if(g)] where TW((BT is the amplitude (solid curve)
and [)(q) is the phase structure (dashed curve). (From |20].)



