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In the interconnected-tubes model of hepatic transport and elimination, intermixing between
sinusoids was modelled by the continuous interchange of solutes between a set of parallel
tubes. In the case of strongly interconnected tubes and for bolus input of solute, a zeroth-order
approximation led to the governing equation of the dispersion model. The dispersion number
was expressed for the "rst time in terms of its main physiological determinants: heterogeneity
of #ow and density of interconnections. The interconnected-tubes model is now applied to
steady-state hepatic extraction. In the limit of strong interconnections, the expression for
output concentrations is predicted to be similar in form to those predicted by the distributed
model for a narrow distribution of elimination rates over sinusoids, and by the dispersion
model in the limit of a small dispersion number D

N
. More generally, the equations for the

predicted output concentrations can be expressed in terms of a dimensionless &heterogeneity
number'H

N
, which characterizes the combined e!ects of variations in enzyme distribution and

#ow rates between di!erent sinusoids, together with the e!ects of interconnections between
sinusoids. A comparative analysis of the equations for the dispersion and heterogeneity
numbers shows that the value of H

N
can be less than, greater than or equal to the value of

D
N

for a correlation between distributions of velocities and elimination rates over sinusoids,
anticorrelation between them, and when all sinusoids have the same elimination rate, respec-
tively. Simple model systems are used to illustrate the determinants of H

N
and D

N
.
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1. Introduction

The prediction of hepatic extraction in terms of
changes in hepatic blood #ow, solute binding in
the blood and hepatic enzyme activity is of clini-
cal importance. The well-stirred model has been
widely used as illustrated in the recent work on
the prediction of hepatic extraction under vary
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ing conditions of cardiac output (Schoemaker
et al., 1998); the dispersion model has also been
widely applied, especially in the prediction of
human hepatic extraction of solutes from their in
vitro metabolic clearances in human hepatocytes
or microsomes (Iwatsubo et al., 1997); and the
distributed model has been used to predict vari-
ous aspects of steady-state extraction (Bass, 1980;
Bass & Keiding, 1988).

Whilst the well-stirred model represents the
liver as one completely mixed compartment or
tank, the dispersion model represents it as
( 1999 Academic Press
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a &&chemical reactor'', and aims to take account of
(1) the variations in the #ow velocity and in the
lengths of di!erent sinusoids, (2) mixing of blood
at the branch points of sinusoids and at the
interconnections between sinusoids, and (3) in
principle, molecular di!usion, in terms of a &&dis-
persion number'' D

N
, average #ow-velocity v

av
,

and average elimination rate k
av

appearing in
a partial di!erential equation of convection}
di!usion}reaction form. A limitation of the
dispersion model has been the limited under-
standing and mathematical description of its
de"ning stochastic parameter, the dispersion
number D

N
. To date, almost all studies exploring

the determinants and magnitude of D
N

have been
experimental, measuring out#ow concentrations
after injection into the liver. Such studies have
included bolus inputs of vascular references
(Roberts & Rowland, 1986a), steady-state extrac-
tion (Roberts & Rowland, 1986b), metabolite
formation (Roberts & Rowland, 1986c) and
microsomal enzyme clearances (Roberts & Row-
land, 1986d). Bass et al. (1987) and Roberts et al.
(1988) recognized that the dispersion number was
determined by vascular dispersion and enzyme
distribution along the liver sinusoids. Vascular
dispersion, which can be determined by the
out#ow concentration}time pro"le of a vascular
reference, has been shown to be relatively inde-
pendent of hepatic #ow rate and blood composi-
tion (Roberts et al., 1990a), coadministration of
vasoactive substances (Roberts et al., 1990b), age
and species di!erences (Roberts et al., 1999), hep-
atic regeneration after partial hepatectomy
(Weiss et al., 1998) and ischaemia reperfusion
(unpublished data). Whilst enzyme heterogeneity
(Bass et al., 1987; Roberts et al., 1988), axial
di!usion (Rivory et al., 1992) and radial tissue
di!usion (Luxon & Weisiger, 1993; Weiss
& Roberts, 1996) a!ect interpretation of the
dispersion number, most recent experimental
studies have found that the dispersion number
for extracted solutes, DE

N
, is similar to that for

vascular dispersion, DV
N
, for bolus input experi-

ments (Chou et al., 1993; Hussein et al., 1994;
Evans et al., 1983; Hung et al., 1998a, b). The
exception in this analysis appears to be the de-
pendence of taurocholate hepatic extraction on
its fraction unbound in perfusate, presumably
due to Bass-Pond e!ects (i.e. limitation in dis-
sociation from proteins and di!usion to anion
pumps) (Roberts et al., 1990a).

The distributed model (Bass et al., 1978;
Bracken & Bass, 1979) represents the sinusoids of
the liver as a very large ensemble of n functionally
independent tubules over which there is a distri-
bution of blood #ow rates f

j
and enzymatic elim-

ination rates k
ej

, for j"1, 2,2 , n. (We consider
only the limit of linear kinetics.) Assumptions are
not needed in the model regarding either the
constancy of cross-sectional areas of sinusoids, or
their lengths, but for the present purposes it is
convenient to simplify the modelling and suppose
that each sinusoid has a constant area of cross-
section, say a

j
for the jth one, and that all the

sinusoids have the same length ¸. The velocity of
blood #ow through the jth sinusoid is constant
under the "rst of these further assumptions, at the
value v

j
"f

j
/a

j
. In terms of these modi"ed as-

sumptions and variables, and in the case that the
distribution of elimination rates is narrow, the
model enables steady-state hepatic extraction to
be expressed in the form (Bass, 1980)

E"1!exp (!R
N
(1#1

2
e2R2

N
)) , (1)

with e2;1. Here R
N

is the dimensionless
&&e$ciency number'' (Roberts & Rowland, 1986a)
given by

R
N
"

k
av
<

F
"

k
av
¸

v
av

, (2)

and the dimensionless parameter e2 is given by

e2"
1
F

n
+
j/1

f
j A

k
ej

/k
av

v
j
/v

av
B
2
!1. (3)

In eqn (2) and (3), <"A¸ is the total liver
(sinusoidal) volume, F"+ n

j/1
f
j

is the total
blood #ow rate through the liver, A"+ n

i/1
a
i
is

the total area of cross-section of sinusoids, and
v
av

, k
av

are average sinusoidal velocity and elim-
ination rate, respectively, de"ned as

v
av
"

F
A

, k
av
"

1
A

n
+ a

i
k
ei
. (4)
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Roberts & Rowland (1985, 1986a) have shown
that di!erent forms of the dispersion model yield
an equation similar in form to eqn (1), when
D

N
;1 and a uniform enzyme distribution along

sinusoids is assumed

E"1!exp (!R
N
(1#D

N
R2

N
) ). (5)

In their study of the relationship between eqns (1)
and (5), Bass et al. (1987) recognized that D

N
used

in equation (5), which we will refer to as DE
N

for
clarity to represent the dispersion number de-
"ned by hepatic extraction, has two components,
one due to heterogeneity of enzyme distribution
in sinusoids, and the other due to vascular disper-
sion. They limited their considerations of enzyme
heterogeneity to longitudinal distribution of en-
zymes. Roberts et al. (1988) recognized that trans-
verse enzyme distribution was also important but
limited their analysis to numerical simulations.
Comparing the distributed model with the dis-
persion model for DE

N
;1, Bass et al. (1987) sug-

gested that the dispersion number for extracted
solutes under the condition of steady-state input
can be expressed explicitly as

DE
N
"Da

N

o2

oN 2
"1

2
e2. (6)

Here Da
N

is the apparent dispersion number, de-
"ned predominantly by the vascular dispersion
(as can be obtained from the out#ow pro"le of
a non-extracted vascular reference after bolus
administration), but also by the transverse en-
zyme heterogeneity. Also in eqn (6), o(x) is a
density function which describes distribution of
enzyme along liver sinusoids (assumed by Bass
et al. to be the same for all sinusoids), and

oN "
1
¸ P

L

0

o(x) dx, o2"
1
¸ P

L

0

o(x)2dx. (7)

The interconnected-tubes model of hepatic
elimination was developed, in part to provide
a "rmer physiological basis for the dispersion
model, and to identify better the underlying
determinants of the dispersion number in a
mathematically precise and rigorous manner.
Our initial analysis was limited to the construc-
tion of the model and its application to the speci-
"c case of the out#ow concentration}time pro"le
following bolus input (Anissimov et al., 1997). It
was shown that the zeroth-order approximation
of the interconnected-tubes model is equivalent
in form to the dispersion model and that the
dispersion number can be explicitly expressed in
terms of the determinants (1) heterogeneity of
#ow and (2) density of interconnections between
sinusoids. It is important to note that the disper-
sion number as derived in this approximation
does not involve heterogeneity of the elimination
rates. The simplest form of the model, in com-
parison with experimental data, yielded an esti-
mate of about ten interconnections, on average,
between sinusoids.

We now consider the application of the inter-
connected-tubes model to the case of steady-state
hepatic extraction. A speci"c goal is to clarify
further the e!ects of enzyme heterogeneity and
vascular dispersion on the dispersion number,
complementing the study of Bass et al. (1987) and
Roberts et al. (1988), and to do this in a more
exact form using the mathematical analysis of the
interconnected-tubes model. We shall show that
the steady-state extraction of solutes is de"ned by
a heterogeneity number as well as the e$ciency
number common to the various hepatic elimina-
tion models (Roberts & Rowland, 1986a). This
heterogeneity number depends on both micro-
mixing and transverse enzyme heterogeneity.

2. Brief Review: Interconnected-Tubes Model
and Bolus Input

In order to describe both the sinusoidal struc-
ture of the liver, and the high degree of intermix-
ing observed experimentally (Koo et al., 1975), we
modelled the elimination process in terms of
a large number n of tubes acting in parallel, with
various #ow rates, with elimination within each
tube, and with continuous interchange of sub-
strate between tubes along their (common) length
¸ (Anissimov et al., 1997). For linear elimination
kinetics, and under simplifying assumptions that
cross-sectional areas, #ow rates, elimination
rate constants and coe$cients describing ex-
change of solute between tubes are all constant
along the tubes, the governing equations of the
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interconnected-tubes model in matrix form are
(Anissimov et al., 1997)

Lc(x, t)
Lt

"!V
Lc(x, t)

Lx
!K

e
c (x, t)#Mc(x, t), (8)

where t is the time, x the distance along the
tubes from input at x"0 to output at x"¸,
c(x, t)"(c

1
(x, t), c

2
(x, t),2 , c

n
(x, t))T and V"

diag(v
i
), K

e
"diag (k

ei
) and M are n]n matrices.

For the i-th tube, c
i
(x, t) is the concentration, v

i
is

the (constant) velocity of blood #ow, k
ei

is the
elimination rate constant and a

i
is the (constant)

cross-sectional area. In addition, M"Mm
ij
N is the

matrix of coe$cients of exchange between tubes,
so that

m
ij
"!d

ij

n
+
l/1

k
il
#k

ji

a
j

a
i

, i, j"1,2 , n, (9)

where k
ij

is the constant coe$cient of exchange
from tube i to tube j. Due to physical constraints
and consistency conditions on the system of in-
terconnected tubes, the matrix M has the proper-
ties (Anissimov et al., 1997)

aTM"0, Me"0, rank (M)"n!1, (10)

where a"(a
1
, a

2
,2 , a

n
)T and e"(1, 1,2 , 1)T.

It was assumed by Anissimov et al. (1997) that
the coe$cients of exchange k

ij
are typically

proportional to the average number of mixing
sites N

mix
along the sinusoids. More precisely, for

each i,

¹max
jOi

(k
ij
)"aN

mix
, (11)

where ¹ is the average time of passage through
the liver, and a is the coe$cient of propor-
tionality of order 1. If it is further assumed that
N

max
<1 and therefore ¹maxjOimij

<1, then the
solution of eqn (8) can be represented by the
asymptotic series

c (x, t)"ek1@2c
0
(z, t)#c(1)(z, t)

#k~1@2c(2)(z, t )#2, (12)
where k<1 is such that k~1¹ max
jOi

m
ij
&1;

c(i)
j

(z, t)"O(1) for z"(¸/v
av

)O(1) and c(i)
j

(z, t)P0
for DzD<¹"¸/v

av
as kPR, with

z"k1@2(t!x/v
av

), (13)

and v
av

the average sinusoidal velocity.
It was found in terms of the variables x and t,

that the partial di!erential equation for c
0

is
equivalent to the equation for the convec-
tion}dispersion model of hepatic elimination
(Roberts & Rowland, 1985):

Lc
0
(x, t)
Lt

"!v
av

Lc
0
(x, t)
Lx

#D
L2c

0
(x, t)

Lx2
!k

av
c
0
(x, t). (14)

The dispersion coe$cient D is de"ned here in
terms of parameters of the interconnected-tubes
model (Anissimov et al., 1997) by

D"

aT(V!v
av
I )w(1)

Ak
v
av

, (15)

where I is a unit matrix and w(1) is the solution of
the linear algebraic equations

Rw(1)"b"e!
v
v
av

, eT )w(1)"0, (16)

and R"k~1M, so that maxiOj (rij
)&v

av
/¸.

For the dimensionless dispersion number
(Roberts & Rowland, 1986a), we then have

D
N
"

D
¸v

av

"

aT(V!v
av

I)w(1)

Ak¸
. (17)

Although the heterogeneity of the elimination
rates was modelled in eqn (8) by the term K

e
, its

zeroth-order approximation (14) is independent
of this heterogeneity. In particular, the dispersion
number de"ned in eqn (17) is independent of the
heterogeneity of the elimination rates and is de-
termined only by the distribution of velocity, as
de"ned by v, and the strength and structure of
interconnections as de"ned by w(1). It is therefore
reasonable to call D

N
in eqn (17) the vascular
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dispersion number DV
N
, as determined for exam-

ple by the out#ow concentration}time pro"le of
a non-extracted vascular marker (Roberts et al.,
1990).

3. The Steady State

In the steady state, the time derivative ap-
proaches zero in eqn (8) and we have

V
dc
dx

"!K
e
c#Mc, (18)

with the boundary condition

c(0)"c
in
e, (19)

where c
in

is the input concentration of drug com-
mon to all sinusoids.
For two tubes (n"2), eqn (18) is a pair of
coupled linear "rst-order di!erential equations.
Taking into account properties (10), the matrix
M can be written as

M"mA
!1

c
1

!cB , (20)

where m"m
12

and c"a
1
/a

2
. The solution of

eqn (18) with boundary condition (19) is, for
n"2,

c
1
"c

in
expA

xd
2v

1
v
2
B

]C
d!2v

2
k
e1

b
sinhA

xb
2v

1
v
2
B#coshA

xb
2v

1
v
2
BD ,
c
2
"c

in
expA

xd
2v

1
v
2
B

]C
d!2v

1
k
e2

b
sinhA

xb
2v

1
v
2
B#coshA

xb
2v

1
v
2
BD ,

(21)

where

b"J(v
2
(m#k

e1
)!v

1
(cm#k

e2
))2#4ck2v

1
v
2

and
d"v

2
(m#k

e1
)#v

1
(cm#k

e2
).

For the case of strong interconnection between
tubes (m"kr, with k<1 and r&v

av
/¸), one can

easily obtain the "rst-order approximations to c
1

and c
2

for large k:
c
1
(x)"c

in
expA!

k
av

v
av

xB C1#
1
k

(k
e2

v
1
!k

e1
v
2
) [xc(k

e2
v
1
!k

e1
v
2
)#v

2
(cv

1
#v

2
)]

r(cv
1
#v

2
)3 D ,

c
2
(x)"c

in
expA!

k
av

v
av

xBC1#
1
k

(k
e1

v
2
!k

e2
v
1
) [xc(k

e1
v
2
!k

e2
v
1
)#v

1
c (cv

1
#v

2
)]

r(cv
1
#v

2
)3 D , (22)
We note that these asymptotic formulae are
correct only if exp (!krx (c/v

2
#1/v

1
)) can be

neglected, that is for not very small values of x.
For the #ow-weighted output concentration

c
out

we have

c
out
"

a
1
v
1
c
1
(¸)#a

2
v
2
c
2
(¸)

a
1
v
1
#a

2
v
2

"

cv
1
c
1
(¸)#v

2
c
2
(¸)

cv
1
#v

2

,

and substituting c
1

and c
2

from eqn (22) we get

c
out

"c
in

expA!
k
av

v
av

¸B
]C1#

1
k

c¸(k
e1

v
2
!k

e2
v
1
)2

(cv
1
#v

2
)3 D . (23)
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The form of the asymptotic series expansion
for large k, as follows from eqn (22), is

c
i
"f

0
(x)#k~1 f (1)

i
(x)#k~2 f (2)

i
(x)#2,

i"1, 2, (24)

where f
0

and f (j )
i

are some functions of x which
are O(1) as kPR. Note that this form is di!erent
from eqn (12), the form obtained for bolus input.

Having the exact solution, and the approxima-
tion to it for large k, in the case of two tubes, we
can now analyse the steady-state case for a sys-
tem of n interconnected tubes. As in the time-
dependent case, we consider m

ij
"kr

ij
with k<1,

so that maxiOj (rij
)&v

av
/¸. Given the form of

approximation (24) for large k in the case of two
tubes, it is reasonable to expect for c an asymp-
totic series expansion of the form

c(x)"ec
0
(x)#

1
k

c(1)(x)#
1
k2

c(2)(x)#2, (25)

which should not be valid for very small values of
x. We will represent c(i) by two components, one
parallel to and one orthogonal to e,

c(i)(x)"ec(i)
0

(x)#d(i)(x), (26)

and substitute eqn (25) into eqn (18), with
M"kR. Grouping terms with the same power of
k yields

k0: v
d
dx

c
0
(x)"!k

e
c
0
(x)#Rd(1)(x), (27)

k~1: v
d
dx

c (1)
0

(x)#V
d
dx

d(1)(x)

"!k
e
c (1)
0

(x)!K
e
d(1)(x)#Rd(2)(x), (28)

k~i: v
d
dx

c (i)
0

(x)#V
d
dx

d(i)(x)

"!k
e
c(i)
0

(x)!K
e
d(i)(x)#Rd(i`1)(x), (29)

where i*2, vT"(Ve)T"(v
1
, v

2
,2 , v

n
) and

kT
e
"(K

e
e)T"(k

e1
, k

e2
,2 , k

en
). We now multiply
eqn (27) by aT on the left, and using aTR"0
we get

dc
0
(x)

dx
"!

aTk
e

aTv
c
0
(x)"!

k
av

v
av

c
0
(x), (30)

as we have aTv"Av
av

and aTk
e
"Ak

av
. Thus, the

zeroth-order approximation for the steady-state
leads to a single tube equation, or the tube
model (Bass et al., 1976), with the elimination
rate k

av
and the #ow velocity v

av
. The solution of

eqn (30) is

c
0
(x)"C

1
expA!

k
av

v
av

xB, (31)

where C
1

is an arbitrary constant. To "x C
1
, we

cannot directly use the boundary condition (19),
as the asymptotic expansion (25) and thus the
di!erential equation (30) for c

0
(x) is not valid for

very small x. Instead, we will later use a compari-
son with the two-tubes case to determine C

1
.

Having substituted c
0
(x) from eqn (31) into

eqn (27), we get

Rd(1)(x)"k
avA

k
e

k
av

!

v
v
av
B c

0
(x) (32)

or
d(1)(x)"k

av
u(1)c

0
(x), (33)

where u(1) is the solution of the linear algebraic
equations

Ru(1)"A
k
e

k
av

!

v
v
av
B , eTu(1)"0. (34)

The solution of eqn (34) exists and is unique
because R shares the property (10) with M.

We note that in the case of uniform elimination
rates, where k

e
"k

av
e, eqn (34) can be written as

Ru(1)"Ae!
v
v
av
B , eTu(1)"0. (35)

Comparing this equation with the de"nition of
w(1) in eqn (16), it is easily seen that

u(1)"w(1). (36)
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To "nd c (1)
0

(x), we multiply eqn (28) by aT from
the left, use aTR"0 again, and substitute d(1)(x)
in the form (33). The equation for c (1)

0
(x) is now

Av
av

dc (1)
0

(x)
dx

#Ak
av

c (1)
0

(x)

"k
av AaTVu(1)

k
av

v
av

!aTK
e
u(1)B c

0
(x). (37)

The general solution of this di!erential equa-
tion is

c (1)
0

(x)"C
1
(C

2
#Bx) expA!

k
av

v
av

xB , (38)

where

B"

k2
av

Av2
av

aT AV!v
av

K
e

k
av
B u(1), (39)

and C
2

is another constant.
Thus, the "rst-order approximation is

c(x)"C
1
expA!

k
av

v
av

xB

]Ae#
k
av
k

u(1)#
1
k

e (C
2
#Bx)B . (40)

The corresponding approximation to the #ow-
weighted output concentration is

c
out

"

aTVc(¸)
aTv

"C
1
expA!

k
av

v
av

xB A1#
1
k

B¸

#

1
k AC2

#

k
av

aTVu(1)

aTv BB . (41)

To "nd the constants C
1

and C
2

we may use
a comparison with the two-tubes case. Compar-
ing eqn (23) with eqn (41) we see that C

1
"c

in
. In

eqn (23), the term of order k~1 is proportional
to ¸, so that in eqn (41) the third term in
parentheses must be zero, that is

C
2
"!

k
av
aTVu(1)

aTv
, (42)

and for the output concentration we have

c
out

"c
in

(1#H
N
R2

N
)e~RN, (43)

where

H
N
"

aT (V!v
av

K
e
/k

av
)u(1)

Ak¸
, (44)

which we call the heterogeneity number, and
R

N
is the e$ciency number eqn (2). It is clear from

de"nition (44) that H
N

takes into account not
only heterogeneity of #ow rates, as described by
DV

N
, but variations of enzyme activity as well.

When elimination rates in all tubes are the
same, then u(1)"w(1) as in eqn (36), and K

e
/

k
av
"I. Hence, de"ning DV

N
by eqn (17), and

H
N

by eqn (44), it is evident that H
N
"DV

N
in

this case. It is obvious from eqn (44) that for the
case of full correlation between Mk

ej
N and Mv

j
N,

that is (k
ej
!k

av
)/k

av
"(v

j
!v

av
)/v

av
, we have

H
N
"0 and therefore H

N
(DV

N
. For full anti-

correlation (also called full inverse correlation
or full negative correlation), when (k

ej
!k

av
)/

k
av
"!(v

j
!v

av
)/v

av
(for positiveness of Mk

ej
N

and Mv
j
N in this case we need to limit distributions

so that max k
ei
)2k

av
and max v

i
)2v

av
) com-

parison of eqns (44) and (17) gives instead
H

N
"4DV

N
and therefore H

N
'DV

N
. This analysis

gives some idea as to what the dependence of
H

N
on relative distribution of velocities and elim-

ination rates could be for an arbitrary system of
interconnected tubes.

We note that the heterogeneity of enzyme dis-
tribution described by Bass et al. (1987) [the term
o2/o6 2 in eqn (6)] is due to the distribution of
enzyme along sinusoids and is di!erent from the
heterogeneity of elimination rates considered in
this paper, which is due to the di!erent enzyme
activities in di!erent sinusoids (transverse distri-
bution of enzyme). In fact, because we assumed,
for simplicity, that each k

ei
is constant along the
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corresponding tube, it follows that o is indepen-
dent of x in our analysis, and hence o2/o6 2"1 in
eqn (6).

4. The Dispersion and Heterogeneity Numbers

Equations (17) and (44) give a quantitative
de"nition for the dispersion and heterogeneity
numbers, previously described only qualitatively
by Roberts & Rowland (1986a). Unfortunately,
these equations involve vectors w(1) and u(1)
which are solutions to linear algebraic equations
(16) and (34), and cannot be expressed in a simple
form for a general system of interconnected tubes.
In order to throw some light on these expres-
sions, we will consider a few speci"c examples
where the expressions for the vectors w(1) and u(1),
and thus for DV

N
and H

N
, are simple.

As a simple example of a model n-tube system,
we consider "rst the case of n tubes with equal
cross-sectional areas (a

i
"A/n) and interconnec-

tions between neighbouring tubes, so that each
tube is connected to two tubes, except the "rst
and last which are connected to only one neigh-
bouring tube. We will consider equal rates of
exchange between tubes. The coe$cient of inter-
connections in this case is

k
ij
"kr (d

ij~1
#d

i~1j
), iOj,

and the matrix R is

R"r A
!1 1 0 2 0

1 !2 1 0 2 0

0 1 !2 1 0 2 0

F F

0 2 0 1 !1
B

Using this matrix to solve eqns (34) yields for u(1):

u (1)
i
"

1
r A

i~1
+
j/1

(i!j )b
j
!

1
n

n
+
k/2

k~1
+
j/1

(k!j)b
jB ,

(45)

where b
i
"k

ei
/k

av
!v

i
/v

av
.

As all tubes have equal cross-sectional areas,
then aT"AeT/n, and

aT(V!v
av

K
e
/k

av
)"

A
n

(vT!kT
e
v
av
/k

av
)"

Av
av

n
bT,

so that formula (44) for H
N

simpli"es to

H
N
"

v
av

nk¸
bTu. (46)

Using eqn (45) for u(1) and taking into account
that bTe"0, we get

H
N
"!

v
av

nkr¸
n
+
i/2

i~1
+
j/1

(i!j)b
j
b
i
.

This equation can be rewritten as

H
N
"

1
nkr¸v

av
k2
av

n
+
i/2
A
i~1
+
j/1

(k
ej
v
av
!v

j
k
av

)B
2
. (47)

To get an expression for DV
N
, we simply need to

take k
e
/k

av
"e (as for the uniform elimination

rates DV
N
"H

N
) in eqn (47), thus

DV
N
"

1
nkr¸v

av

n
+
i/2
A
i~1
+
j/1

(v
av
!v

j
)B

2
. (48)

It is easy to see now that DV
N

and H
N

are
positive for any n in this model system. Note as
well that eqn (47) for H

N
can be written in a form

somewhat similar to that of e2 in eqn (3). Indeed,
as av

j
"f

j
, anv

av
"F and kr¹"kr¸/v

av
"aN

mix
as in eqn (11), then eqn (47) can be modi"ed to

H
N
"

1
F2aN

mix

n
+
i/2
A

i~1
+
j/1

f
j A

k
ej
/k

av
v
j
/v

av

!1BB
2
.

Another model system which we can analyse
consists of n tubes all connected to each other.
Cross-sectional areas of tubes and rates of ex-
change between tubes are again assumed equal.
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Coe$cients of exchange will be k
ij
"kr, iOj,

and in this case the matrix R is

R"A
!(n!1) 1 2 1

1 !(n!1) 1 2 1

F F

1 2 1 !(n!1)B .

Using this matrix we get for H
N
,

H
N
"

1
n2k¸v

av
k2
av

n
+
i/1

(k
ej

v
av
!v

j
k
av

)2. (49)

Taking k
e
/k

av
"e we get for DV

N

DV
N
"

1
n2k¸v

av

n
+
i/1

(v
av
!v

j
)2. (50)

Once again, these expressions for H
N

and DV
N

are
obviously positive.

Equations (47)}(50) show how H
N

and DV
N

depend on the distribution of velocities and
elimination rates for the two simple model sys-
tems of interconnected tubes considered in this
section.

While it is not yet proved that H
N

and DV
N

de"ned in eqns (44) and (17) are positive for any
system of interconnected tubes, the two examples
considered here give some ground to believe that
this is true in general, as would be expected
intuitively.

It is interesting to note that in terms of
interconnections between tubes, the "rst model
system considered in this section represents
&minimal' coupling and the second &maximal'
coupling. In the "rst case, each tube is connected
only to neighbouring tubes, whereas in the sec-
ond case all the tubes are connected with each
other. Comparing expressions for the dispersion
number for the "rst case, eqns (47) and (48), with
expressions for the second case, eqns (49) and
(50), one can see that the dispersion number for
the maximal coupling is much less than for the
minimal coupling. In fact, DV

N1
*nDV

N2
, where

DV
N1

and DV
N2

are dispersion numbers for the "rst
and the second cases, respectively. Together with
DV

N
being proportional to 1/k, this leads to the

conclusion that the heterogeneity of transit times
through the liver decreases with increase of coup-
ling between sinusoids. It is not clear, yet, to what
degree this conclusion is due to the particular
way of modelling of interconnections between the
sinusoids in eqn (8). We hope to verify this de-
pendence of the heterogeneity of transit times on
the strength of coupling in future by directly
modelling discrete systems of interconnected
tubes on the computer.

It was shown previously (Anissimov et al.,
1997) that for two interconnected sinusoids, the
coe$cient of interconnection k

12
can be approxi-

mated using

k
12
¹"k

12
¸/v

av
+aN, (51)

where a+0.7 and N is the number of intercon-
nections between two sinusoids. Extending eqn
(51) to a system of n interconnected tubes we have

k
ij
¹+aN

ij
, (52)

where N
ij

is the number of interconnections be-
tween the i-th and j-th sinusoids. Summation of
eqn (52) with respect to index j and then aver-
aging for an entire system of n tubes yields

+
jOi

k
ij
¹+aN

mix
, (53)

where N
mix

is the average number of sinusoids
connected to any one sinusoid. Applying eqn (53)
to the model systems considered in this section it
is possible to approximate kr¹:

kr¹+aN
mix

n
2(n!1)

(54)

for the model system with &minimal' coupling,
and

kr¹+aN
mix

1
n!1

(55)

for the model system with &maximal' coupling.



FIG. 1. Frequency distribution of the velocity of #ow in
sinusoids (adapted from Koo et al., 1975).
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Using eqns (54) and (55), eqns (48) and (50) can
be written for the two-model systems as

DV
N1

+

1
aN

mix

2(n!1)
n2

n
+
i/2
A

i~1
+
j/1
A1!

v
j

v
av
BB

2
, (56)

DV
N2

+

1
aN

mix

n!1
n2

n
+
i/1
A1!

v
j

v
av
B
2
. (57)

These formulae give some insight into the way
in which the distribution of velocities, and the
nature of interconnections, contribute to the dis-
persion number. It is possible to approximate
DV

N
now if the distribution of v

j
values and the

average number of interconnections per sinusoid
N

mix
are known. We note though, that due to the

simpli"ed way of modelling interconnections in
the model systems presented here, the number
n in eqns (56) and (57) should not be regarded
strictly as the number of sinusoids in the entire
liver. It may be interpreted rather as the number
of sinusoids which are strongly interconnected
with each other.

The actual distribution of the velocity of #ow
in sinusoids is shown in Fig. 1; it was obtained
from the data of Koo et al. (1975). The frequency
distributions of the direct, interconnected and
branching sinusoids were summed to get the fre-
quency distribution for all sinusoids. Grouping
all sinusoids into n sets with similar velocities and
equal numbers of sinusoids in each set, we "nd v

j
,

with j"1,2 , n, as an average velocity of the
j-th set. Using these v

j
in eqns (56) and (57),

together with a"0.7 and N
mix

"5 (Bass et al.,
1987), yields for DV

N
:

n 2 3 5 10 100

DV
N1

0.0294 0.1001 0.3450 1.5727 173.56

DV
N2

0.0294 0.0514 0.0712 0.0882 0.1138

where DV
N1

and DV
N2

are dispersion numbers for
model systems with &&minimal'' and &&maximal''
couplings, respectively. It is interesting that the
dispersion number is typically greater for &&min-
imal'' than &&maximal'' coupling. For n"5, the
values DV

N1
"0.3450 and DV

N2
"0.0712 provide
reasonable upper and lower bounds, respectively,
for experimental values of the dispersion number
(Roberts et al., 1988). The large values of DV

N1
for

the model system with &&minimal'' coupling and
with n*10, are unrealistic, and probably arise
because k is not big enough to validate the analy-
sis in those cases. We recall that eqns (56) and (57)
are only valid for k<1; in fact k is only about
3 for N

mix
"5.

It should be noted that the analysis of the value
of the dispersion number presented here is very
approximate. Further, using simpli"ed model
systems, we have not taken into account the
heterogeneity of lengths of liver sinusoids. This
heterogeneity might increase the e!ective hetero-
geneity of velocities, thus increasing the value of
DV

N
.

5. Discussion

Further analyses of the interconnected-tubes
model has been presented in this work. The ap-
proximation to the interconnected-tubes model
for a large number of mixing sites (N

mix
<1) for

the steady-state input has been developed and
results compared with that of bolus input.

It is interesting to compare the "rst-order ap-
proximation to the interconnected-tubes model,
given by eqn (43), with the result for the disper-
sion model, where D

N
for consistency must be
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taken as a small parameter (D
N
;1), because

we have D"O(k~1). Recognizing that c
out

"

c
in
(1!E), and keeping only terms to the order of

D
N

in the approximation D
N
;1 of the dispersion

model (5), yields

c
out

+c
in

(1#DE
N
R2

N
)e~RN , (58)

where DE
N

is the dispersion number for extracted
solutes in the steady state, as de"ned in eqn (6).
This prediction of the dispersion model is equiva-
lent to that of the interconnected-tubes model, as
in eqn (43) with H

N
"DE

N
. In the case of arbitrary

elimination rates, H
N
ODV

N
, and therefore DV

N
O

DE
N
. We see that, because of its approximate na-

ture, the dispersion model equation (14) cannot
be applied to the steady state and bolus input
cases with the same dispersion number, when
substantial enzyme heterogeneity exists.

Owing to the inclusion of the intermixing
terms in equations for the interconnected-tubes
model, H

N
depends now not only on distribu-

tions of k
ei

and v
i
, as does e2, but also on the

extent and the structure of the intermixing be-
tween the sinusoids. In eqn (44), the parameters
k and u(1) (which itself depends on R) determine
this dependence of H

N
on intermixing.

An important theoretical result for the distrib-
uted model is its prediction that e2 is independent
of small changes in the hepatic blood #ow F. We
shall now examine whether H

N
depends on F.

Suppose that a change of F is small enough not
to change the shape of the distribution of ve-
locities v

i
in sinusoids; more precisely, suppose

that v
i
JF for all i. Then, for the average velocity

(4) we also have v
av
JF. It was argued already in

eqn (11) that ¹max jOi kij
"aN

mix
, and with

N
mix

unchanged and ¹"¸/v
av
J1/F, we have

for the coe$cient of exchange, k
ij
JF. Then

r
ij
JF, as we expect k to be #ow-independent.

Using eqn (34), we now obtain u(1)J1/F. Finally,
using eqn (44) it is easy to see that H

N
is indepen-

dent of small changes of the hepatic blood #ow.
This result is in agreement with the experimental
data for the steady state (Bass, 1980). Similar
analysis for the vascular dispersion number
shows that DV

N
is also independent of small

changes of the hepatic blood #ow, in agreement
with experiments (Roberts et al., 1990a).
The zeroth-order approximation to the inter-
connected-tubes model for bolus input results in
the convection}dispersion}reaction equation (14)
(Anissimov et al., 1997). In contrast, for the
steady state, the zeroth-order approximation
gives the convection equation (30). The under-
standing of this apparently contradictory result
comes with the analysis of the order of magnitude
of each term in eqns (8) and (18). In eqn (8), the
derivatives Lc/Lx and Lc/Lt are of a higher order
in the expansion parameter of k than is c, because
c(x, t) is sharply peaked at x"tv

av
. However in

eqn (18), dc/dx is of the same order of magnitude
as c. As D"O(k~1) according to eqn (15), so
DV

N
;1, and the term Dd2c

0
/dx2 disappears in

the zeroth-order approximation of eqn (14) as
a steady-state expression. Hence, eqn (14) is
equivalent to eqn (30) in the steady-state case.

The comparison of the steady-state case and
the case of bolus input leads to the realisation
that the dispersion model, when viewed as
an approximation to the interconnected-tubes
model, does not comply with familiar notions of
linear modelling when enzyme heterogeneity
exists. We would normally expect that the re-
sponse of the system to the unit impulse input
(Green's function) de"nes the response for any
input. However, eqn (43), the approximation to
the interconnected-tubes model for the steady-
state input, is not the same as the corresponding
equation (58) for the dispersion model when
H

N
ODV

N
. The mathematical reason for this dis-

crepancy being the approximate nature of the
dispersion model when viewed as a limiting case
of the interconnected-tubes model. This inability
to use the Green's function for the dispersion
model will be particularly troublesome if the in-
put is an arbitrary function of time and if enzyme
heterogeneity exists. We emphasize that when
there is no distribution of elimination rates
(k

e
"ek

e
) over sinusoids, or its distribution is far

narrower than the distribution of transit times
(which could be the case for many drugs), the
discrepancy between H

N
and DV

N
disappears, and

this di$culty along with it.
It should be emphasized that the present com-

parison of the interconnected-tubes model with
the dispersion model is limited to the speci"c case
where DE

N
;1. The extent to which the results can

be applied to hepatic elimination is uncertain
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since physiologically observed DV
N

values range
from 0.2 to 0.4.

Just as the Goresky and convection}disper-
sion models have two-compartment extensions
(Goresky et al., 1973; Roberts et al., 1988; Yano
et al., 1989), so also the interconnected-tubes
model could be extended by assuming two com-
partments within each tube: one cellular, with no
longitudinal #ow through it, and one vascular,
with convective (longitudinal) transport. Ex-
change of drug between vascular and cellular
compartments could be modelled with rates k1

i
and k2

i
, and elimination from cellular compart-

ments with rates k
eci

. The vascular volume of
distribution, as de"ned by the tube cross-section
a
i
, is known to be dependent on the size of the
&&substance'' being examined. Thus, erythrocytes
are restricted to the sinusoidal space while
albumin has a lower vascular volume of distribu-
tion than the smaller sucrose and sodium
(Goresky, 1963). Distribution volumes which ex-
tend into the cellular compartments are often
de"ned by the physiological distribution space
for the unbound solute together with the relative
binding in the vascular and cellular spaces (Weiss
& Roberts, 1996). Such re"nements to the inter-
connected-tubes model can be expected to yield
similar outcomes, in terms of transit times and
out#ow concentration}time pro"les, that pre-
dicted by the Goresky and convection}dispersion
models.

Analysis of an interconnected-tubes model
which includes heterogeneity of enzyme distribu-
tion in a two-compartment representation is
considered to be possible but requires more com-
plex mathematics. Other extensions can also
be envisaged. Intrahepatic shunting, caused by
cirrhosis for example, can also be modelled by
assuming that a subset of a!ected sinusoids have
elimination rates much lower than those of unaf-
fected sinusoids. One implication of such a model
of shunting will be larger heterogeneity of elim-
ination rates, and therefore a larger discrepancy
between DV

N
and H

N
. In this work, the analysis of

the interconnected-tubes model has been limited
to a simple case where both elimination rates k

ei
,

and coe$cients of exchange k
ij
, are constant

along tubes. These assumptions were made to
allow some progress with the mathematics. For
a numerical treatment of the model, these sim-
plifying assumptions can be relaxed, and more
complex phenomena analysed. For example, it
is then possible to model localised &&zones'' of
elimination in the liver, allowing preferential
elimination or metabolism in, say, the periportal
zone of the liver acinus (Gumucio & Miller,
1981). It is only necessary to allow k

ei
(x) to be-

come functions which decrease with increasing x,
perhaps in discrete steps. It has been argued that
there are more interconnections between the
sinusoids in the periportal region as compared to
the previous region of acini (Gumucio, 1983).
This structure of liver acini can also be modelled,
by allowing the k

ij
(x) to decrease as x increases.

Finally, we want to emphasize that mathemat-
ically, the convection}dispersion and distributed
models can both be regarded as the limiting cases
of the interconnected-tubes model. If there are
few interconnections between tubes (that is
k+0), then eqn (8) is essentially identical to the
de"ning equations of the distributed model,
whereas for k<1, the zeroth-order approxima-
tion to eqn (8) is the de"ning partial di!erential
equation of the convection}dispersion model, as
we have shown. This ensures that the intercon-
nected-tubes model can be made consistent with
a wide range of experimental situations already
successfully described using either the convec-
tion}dispersion or distributed models (Luxon
& Weisiger, 1993; Rivory et al., 1992; Roberts
et al., 1990a, b; Yano et al., 1989; Bass et al., 1987).
It is an important challenge to devise new experi-
ments which can discriminate among various
models more e!ectively and in particular provide
experimental checks of the more detailed inter-
connected-tubes model, and estimates of its
parameters.
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